基于改进模拟退火的航空器起飞质量估算方法
收稿日期: 2022-10-08
修回日期: 2022-11-04
录用日期: 2022-12-14
网络出版日期: 2022-12-22
基金资助
工业与信息化部中欧航空科技合作项目(MJ-2020-S-03)
Aircraft takeoff mass estimation method based on improved simulated annealing algorithm
Received date: 2022-10-08
Revised date: 2022-11-04
Accepted date: 2022-12-14
Online published: 2022-12-22
Supported by
China-EU Aviation Science and Technology Cooperation Project of the Ministry of Industry and Information Technology(MJ-2020-S-03)
航空器起飞质量作为航空器性能的重要参数,对于提高离场轨迹预测精度具有显著效果。考虑到质量参数属于航空公司商业运营数据,难以通过公开渠道获得,提出一种基于历史轨迹数据的航空器起飞质量估算方法。利用航空器的全能量方程,考虑风的影响,根据航空器性能数据库(BADA)性能模型建立航空器起飞质量迭代模型,将禁忌搜索算法中的禁忌表功能引入模拟退火算法,应用改进算法对模型进行高效求解。以典型样本航班为例,估算起飞质量与真实质量的相对误差为2.91%;与BADA参考质量相比,采用估算起飞质量进行轨迹预测时精度得到了有效提高;对15种机型、26 724个航班进行起飞质量估算,所有航班估算质量的平均相对误差值为3.45%,占比97.67%的航班估算质量相对误差绝对值在10%以内。可见,所建立的航空器起飞质量估算方法可适用于大批量航班,为高精度轨迹仿真与预测工作提供了技术支撑。
王兵 , 邹润原 , 常哲宁 . 基于改进模拟退火的航空器起飞质量估算方法[J]. 航空学报, 2023 , 44(16) : 328090 -328090 . DOI: 10.7527/S1000-6893.2022.28090
Aircraft takeoff mass, an important parameter of aircraft performance, has significant effect on the accuracy of departure trajectory prediction. Aircraft mass is airline commercial operation data, and is difficult to obtain through public accesses. In this paper, a method for aircraft takeoff mass estimation is proposed based on historical trajectory data. Using the total energy model and considering the effect of wind, an iterative model of aircraft takeoff mass is established based on the Base of Aircraft Data(BADA) performance model. Combining the taboo table function in the taboo search algorithm and the simulated annealing algorithm, the improved algorithm is applied to solve the model efficiently. The result of a typical sample flight shows that the relative error between the estimated takeoff mass and the real mass is 2.91%. Compared with the BADA reference mass, the accuracy of trajectory prediction using estimated takeoff mass is effectively improved. Takeoff mass estimation of 15 types of aircraft and 26 724 flights is conducted. The average relative error value of the estimated mass of all flights is 3.45%. The absolute value of relative error of 97.67% of all flights is within 10%, demonstrating accurate estimation results. The proposed method for aircraft takeoff mass estimation can be applied to batch flights and can provide technical support for high-precision trajectory simulation and prediction.
1 | BENAVIDES J V, KANESHIGE J, SHARMA S, et al. Implementation of a trajectory prediction function for trajectory based operations: AIAA-2014-2198[R]. Reston: AIAA, 2014. |
2 | 张洪海, 汤一文, 许炎. TBO模式下终端区进场交通流优化模型与仿真分析[J]. 航空学报, 2020, 41(7): 323844. |
ZHANG H H, TANG Y W, XU Y. Optimizing arrival traffic flow in airport terminal airspace under trajectory based operations[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 323844 (in Chinese). | |
3 | 杨磊, 李文博, 刘芳子, 等. 柔性空域结构下连续下降航迹多目标优化[J]. 航空学报, 2021, 42(2): 324157. |
YANG L, LI W B, LIU F Z, et al. Multi-objective optimization of continuous descending trajectories in flexible airspace[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 324157 (in Chinese). | |
4 | 张军峰, 蒋海行, 武晓光, 等. 基于BADA及航空器意图的四维航迹预测[J]. 西南交通大学学报, 2014, 49(3): 553-558. |
ZHANG J F, JIANG H H, WU X G, et al. 4D trajectory prediction based on BADA and aircraft intent[J]. Journal of Southwest Jiaotong University, 2014, 49(3): 553-558 (in Chinese). | |
5 | Coppenbarger R A, Kanning G, Salcido R. Real-time data link of aircraft parameters to the center-TRACON automation system (CTAS)[C]∥4th USA/Europe ATM R&D Seminar. Stamford: ATM, 2001: 1-11. |
6 | WICKRAMASINGHE N K, BROWN M, MIYAMOTO Y, et al. Effects of aircraft mass and weather data errors on trajectory optimization and benefits estimation: AIAA-2016-0166[R]. Reston: AIAA, 2016. |
7 | THIPPHAVONG D P, SCHULTZ C A, LEE A, et al. Adaptive algorithm to improve trajectory prediction accuracy of climbing aircraft[J]. Journal of Guidance, Control, and Dynamics, 2012, 36(1): 15-24. |
8 | 吕波, 王超. 改进的扩展卡尔曼滤波在航空器4D航迹预测算法中的应用[J]. 计算机应用, 2021, 41(S1): 277-282. |
LYU B, WANG C. Application of improved extended Kalman filtering in aircraft 4D trajectory prediction algorithm[J]. Journal of Computer Applications, 2021, 41(S1): 277-282 (in Chinese). | |
9 | 康南, 韩孝兰, 胡杨, 等. 基于质量估算策略的离场飞机高度剖面预测[J]. 中国民航大学学报, 2019, 37(3): 11-16. |
KANG N, HAN X L, HU Y, et al. Departure aircraft altitude profile prediction based on aircraft mass estimation strategy[J]. Journal of Civil Aviation University of China, 2019, 37(3): 11-16 (in Chinese). | |
10 | SCHULTZ C, THIPPHAVONG D, ERZBERGER H, et al. Adaptive trajectory prediction algorithm for climbing flights: AIAA-2012-4931[R]. Reston: AIAA, 2012. |
11 | ALLIGIER R, GIANAZZA D, HAMED M G, et al. Comparison of two ground-based mass estimation methods on real data (regular paper): hal-0100240[R]. Stamford: ATM, 2014. |
12 | SUN J Z, ELLERBROEK J, HOEKSTRA J M. Aircraft initial mass estimation using Bayesian inference method[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 59-73. |
13 | CHATI Y S, BALAKRISHNAN H. Modeling of aircraft takeoff weight using Gaussian processes[J]. Journal of Air Transportation, 2018, 26(2): 70-79. |
14 | ALLIGIER R, GIANAZZA D, DURAND N. Machine learning and mass estimation methods for ground-based aircraft climb prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6): 3138-3149. |
15 | ALLIGIER R, GIANAZZA D. Learning aircraft operational factors to improve aircraft climb prediction: A large scale multi-airport study[J]. Transportation Research Part C: Emerging Technologies, 2018, 96: 72-95. |
16 | SEMKE W, ALLEN N, TABASSUM A, et al. Analysis of radar and ADS-B influences on aircraft detect and avoid (DAA) systems[J]. Aerospace, 2017, 4(3): 49. |
17 | ALI B S, TAIB N A. A study on geometric and barometric altitude data in automatic dependent surveillance broadcast (ADS-B) messages[J]. Journal of Navigation, 2019, 72(5): 1140-1158. |
18 | Zhang M, Huang Q W, Liu S H, et al. Fuel consumption model of the climbing phase of departure aircraft based on flight data analysis[J]. Sustainability, 2019, 11(16): 4362. |
19 | 赵军, 唐弋棣. 基于QAR数据的民航发动机性能分析[J]. 计算机仿真, 2020, 37(7): 107-112. |
ZHAO J, TANG Y D. Performance analysis of civil aviation engine based on QAR data[J]. Computer Simulation, 2020, 37(7): 107-112 (in Chinese). | |
20 | 王兵, 张颖, 谢华, 等. 一种基于机载数据的民用航空器飞行阶段划分方法[J]. 交通运输工程学报, 2022, 22(1): 216-228. |
WANG B, ZHANG Y, XIE H, et al. A flight phase identification method based on airborne data of civil aircraft[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 216-228 (in Chinese). | |
21 | 王兵. ADS-B历史飞行轨迹数据清洗方法[J]. 交通运输工程学报, 2020, 20(4): 217-226. |
WANG B. Data cleaning method of ADS-B historical flight trajectories[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 217-226 (in Chinese). | |
22 | COURCHELLE V, SOLER M, GONZáLEZ-ARRIBAS D, et al. A simulated annealing approach to 3D strategic aircraft deconfliction based on en-route speed changes under wind and temperature uncertainties[J]. Transportation Research Part C: Emerging Technologies, 2019, 103: 194-210. |
23 | BAKLACIOGLU T. Modeling the fuel flow-rate of transport aircraft during flight phases using genetic algorithm-optimized neural networks[J]. Aerospace Science and Technology, 2016, 49: 52-62. |
24 | MURRIETA-MENDOZA A, HAMY A, BOTEZ R M. Four- and three-dimensional aircraft reference trajectory optimization inspired by ant colony optimization[J]. Journal of Aerospace Information Systems, 2017, 14(11): 597-616. |
25 | BI J, WU Z, WANG L, et al. A tabu search-based algorithm for airport gate assignment: A case study in Kunming, China[J]. Journal of Advanced Transportation, 2020, 2020: 1-13. |
26 | 温瑞英, 李璐, 魏志强. 基于遗传算法的分段多参气动阻力研究[J]. 飞行力学, 2021, 39(2): 27-32, 44. |
WEN R Y, LI L, WEI Z Q. Research on piecewise multi-parameter aerodynamic resistance based on genetic algorithm[J]. Flight Dynamics, 2021, 39(2): 27-32, 44 (in Chinese). |
/
〈 |
|
〉 |