绳系并联支撑飞机模型绕速度矢量旋转运动设计与模拟
收稿日期: 2022-11-01
修回日期: 2022-11-24
录用日期: 2022-12-07
网络出版日期: 2022-12-14
基金资助
国家自然科学基金(12172315);翼型、叶栅空气动力学重点实验室基金(61422010103);福建省自然科学基金(2021J01050)
Design and simulation of rotation around velocity vector of aircraft model with wire-driven parallel suspension system
Received date: 2022-11-01
Revised date: 2022-11-24
Accepted date: 2022-12-07
Online published: 2022-12-14
Supported by
National Natural Science Foundation of China(12172315);Foundation of National Key Laboratory of Science and Technology on Aerodynamic Design and Research(61422010103);Natural Science Foundation of Fujian Province of China(2021J01050)
绕速度矢量旋转运动风洞试验是研究战斗机尾旋和大迎角复杂机动特性的一种重要手段,其中模型支撑是关键。创新性地设计了基于六自由度绳系并联支撑的旋转运动方式。提出定旋转角速度和定气流角2种旋转运动设计方法,推导得到旋转运动参数与模型位姿之间的关系式,并给出两者的关联;结合支撑系统动力学模型,设计绳长为控制变量的计算力矩控制律。通过ADMAS软件仿真和原理样机试验验证,结果表明所提设计方法可以实现飞机模型绕速度矢量变气流角定速率、定气流角变速率等复杂变参数旋转运动,且定气流角方法既能满足三自由度定耦合比关系,还能准确地模拟战斗机正飞/倒飞尾旋运动,这将为深入研究尾旋和大迎角机动特性提供技术支持。
王家骏 , 王晓光 , 沈楚伦 , 林麒 . 绳系并联支撑飞机模型绕速度矢量旋转运动设计与模拟[J]. 航空学报, 2023 , 44(17) : 128205 -128205 . DOI: 10.7527/S1000-6893.2022.28205
The wind tunnel tests of rotation around the velocity vector are important in the study on fighter spin and maneuver characteristics at high angle of attack, in which the model suspension is a key issue. This paper innovatively designs rotational methods based on the 6-DOF (degree of freedom) wire-driven parallel suspension mechanism. Firstly, two different methods with constant rotational velocity and constant airflow angles are proposed, and the relationships between the rotational parameters and the model attitude angles are derived. The correlation of the two methods is also expounded. Then, a computed torque control law with the wire length as the control variable is designed based on the dynamic equations of WDPSS. Finally, the proposed design methods are both verified through the ADAMS software simulations and the principle prototype experiments. The results show that the proposed methods allow for the fighter model to achieve complex variable-parameter rotation with variable airflow angles/constant angular velocity or constant airflow angles/variable angular velocity. Furthermore, the method of constant airflow angles can meet the 3-DOF fixed-coupling-ratio relationship, and accurately simulate the erected/inverted spin of the fighter, providing technical support for the in-depth study on spin and maneuvering characteristics at high angle of attack.
1 | 孙聪. 从空战制胜机理演变看未来战斗机发展趋势[J]. 航空学报, 2021, 42(8): 525826. |
SUN C. Development trend of future fighter: A review of evolution of winning mechanism in air combat[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525826 (in Chinese). | |
2 | 李乾, 王延奎, 贾玉红. 带边条翼的翼身组合体摇滚运动试验[J]. 航空学报, 2022, 43(11): 526008. |
LI Q, WANG Y K, JIA Y H. Roll oscillations over wing-body configuration with strake wings: Experiment[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 526008 (in Chinese). | |
3 | 李亚东, 张钧尧, 杨凤田, 等. 某型电动飞机大迎角失速/尾旋特性及试飞研究[J]. 西北工业大学学报, 2021, 39(3): 650-659. |
LI Y D, ZHANG J Y, YANG F T, et al. Research on high attack angle stall and spin characteristics with flight test of a general electric aircraft[J]. Journal of Northwestern Polytechnical University, 2021, 39(3): 650-659 (in Chinese). | |
4 | 沈礼敏. CARDC旋转天平风洞试验系统[J]. 气动实验与测量控制, 1995, 9(1): 18-24. |
SHEN L M. Cardc rotary balance wind tunnel testing system[J]. Journal of Experiments in Fluid Mechanics, 1995, 9(1): 18-24 (in Chinese). | |
5 | DENHAM C L, OWENS D B. Rotary balance wind tunnel testing for the FASER flight research aircraft[C]∥ AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2016: 3105. |
6 | FARCY D, KHRABROV A N, SIDORYUK M E. Sensitivity of spin parameters to uncertainties of the aircraft aerodynamic model[J]. Journal of Aircraft, 2020, 57(5): 922-937. |
7 | IGNATYEV D I, SIDORYUK M E, KOLINKO K A, et al. Dynamic rig for validation of control algorithms at high angles of attack[J]. Journal of Aircraft, 2017, 54(5): 1760-1771. |
8 | 王建锋, 张伟, 谭浩. 旋转天平试验测控系统自动化设计[J]. 测控技术, 2018, 37(B11): 249-252. |
WANG J F, ZHANG W, TAN H. Automatic design of the measurement and control system in rotary balance test[J]. Measurement & Control Technology, 2018, 37(B11): 249-252 (in Chinese). | |
9 | 马军, 姜裕标, 祝明红, 等. Φ5m立式风洞旋转天平试验装置研制[J]. 实验流体力学, 2012, 26(2): 77-80. |
MA J, JIANG Y B, ZHU M H, et al. Development of the rotary balance system in Φ5m vertical wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 77-80 (in Chinese). | |
10 | 黄浩, 张永升, 刘丹. FD09风洞旋转天平试验系统研制[J]. 航空工程进展, 2014, 5(4): 429-434. |
HUANG H, ZHANG Y S, LIU D. Development of rotary balance system in FD09Wind tunnel[J]. Advances in Aeronautical Science and Engineering, 2014, 5(4): 429-434 (in Chinese). | |
11 | 郭林亮, 祝明红, 傅澔, 等. 水平风洞中开展飞机尾旋特性研究的理论分析[J]. 航空学报, 2018, 39(6): 122030. |
GUO L L, ZHU M H, FU H, et al. Theoretical analysis of research on aircraft spin characteristic in horizontal wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 122030 (in Chinese). | |
12 | 岑飞, 聂博文, 刘志涛, 等. 面向先进战斗机研制的风洞模型飞行试验技术[J]. 航空学报, 2020, 41(6): 523444. |
CEN F, NIE B W, LIU Z T, et al. Wind tunnel model flight test technique for advanced fighter aircraft design[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523444 (in Chinese). | |
13 | SHEN L, HUANG D, WU G X. Effects of yaw-roll coupling ratio on lateral-directional aerodynamic characteristics[J]. Chinese Journal of Aeronautics, 2019, 32(2): 272-280. |
14 | 沈霖, 黄达, 吴根兴, 等. 战斗机大迎角非定常气动力建模[J]. 航空学报, 2020, 41(6): 523440. |
SHEN L, HUANG D, WU G X, et al. Unsteady aerodynamic modeling for fighter configuration at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523440 (in Chinese). | |
15 | SHEN L, HUANG D, WU G X. Time delay compensation in lateral-directional flight control systems at high angles of attack[J]. Chinese Journal of Aeronautics, 2021, 34(4): 1-18. |
16 | 王晓光, 林麒. 风洞试验绳牵引并联支撑技术研究进展[J]. 航空学报, 2018, 39(10): 022064. |
WANG X G, LIN Q. Progress in wire-driven parallel suspension technologies in wind tunnel tests[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 022064 (in Chinese). | |
17 | LAFOURCADE P. Etude de manipulateurs parallèles à cables, conception d’une suspension active pour souf-flerie[D]. Toulouse: Ecole Nationale Supérieure de l’Aéronautique et de l’Espace, 2004. |
18 | LAFOURCADE P, LLIBRE M, REBOULET C. Design of a parallel wire-driven manipulator for wind tunnels[C]∥Proceedings of the Workshop on Fundamental Issues and Future Directions for Parallel Mechanisms and Manipulators. Quebec: Georgia Tech Research Corporation, 2002: 187-194. |
19 | ROGNANT M, COURTEILLE E. Improvement of cable tension observability through a new cable driving unit design[C]∥3rd International Conference on Cable-Driven Parallel Robots. Cham: Springer, 2017: 280-291. |
20 | LAMBERT T, VUKASINOVIC B, GLEZER A. A six degrees of freedom dynamic wire-driven traverse[J]. Aerospace, 2016, 3(2): 11. |
21 | LAMBERT T J, VUKASINOVIC B, GLEZER A. Aerodynamic flow control of axisymmetric bluff body by coupled wake interactions[J]. AIAA Journal, 2018, 56(8): 2992-3007. |
22 | 周凡桂, 王晓光, 高忠信, 等. 双目视觉绳系支撑飞行器模型位姿动态测量[J]. 航空学报, 2019, 40(12): 123059. |
ZHOU F G, WANG X G, GAO Z X, et al. Binocular vision-based measurement of dynamic motion for aircraft model suspended by wire system[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 123059 (in Chinese). | |
23 | 高忠信, 王晓光, 吴军, 等. 基于刚度优化的绳牵引并联支撑系统力/位混合控制[J]. 航空学报, 2021, 42(7): 324373. |
GAO Z X, WANG X G, WU J, et al. Hybrid force/pose control of wire-driven parallel suspension system based on stiffness optimization[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 324373 (in Chinese). | |
24 | 冀洋锋, 林麒, 胡正红, 等. 基于绳系并联机器人支撑系统的SDM动导数试验可行性研究[J]. 航空学报, 2017, 38(11): 121330. |
JI Y F, LIN Q, HU Z H, et al. Research on feasibility of dynamic stability derivatives test of SDM with wire-driven parallel robot suspension system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 121330 (in Chinese). | |
25 | 潘家鑫, 林麒, 吴惠松, 等. 基于WDPR-8支撑与弯刀尾支撑的风洞对比试验研究[J]. 北京航空航天大学学报, 2021, 47(5): 1038-1048. |
PAN J X, LIN Q, WU H S, et al. Comparative experimental study on wind tunnel based on WDPR-8 and machetes tail support[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 1038-1048 (in Chinese). | |
26 | ZHANG S B, LI X C, SU Z. Cone algorithm of spinning vehicles under dynamic coning environment[J]. International Journal of Aerospace Engineering, 2015, 2015: 1-11. |
27 | 陈恒通, 王晓光, 江海龙, 等. 两种典型六自由度支撑机构大迎角运动特性分析与对比[J]. 中国机械工程, 2023, 34(6): 641-649. |
CHEN H T, WANG X G, JIANG H L, et al. Analysis and comparison of kinematic characteristics for two typical 6-DOF suspension mechanisms at high angles of attack[J]. China Mechanical Engineering, 2023, 34(6): 641-649 (in Chinese). | |
28 | 张立勋, 宋达, 李来禄, 等. 柔索驱动并联机构工作空间算法与布局优化[J]. 哈尔滨工程大学学报, 2018, 39(12): 2017-2024. |
ZHANG L X, SONG D, LI L L, et al. Workspace algorithm and layout optimization of parallel mechanisms driven by flexible cables[J]. Journal of Harbin Engineering University, 2018, 39(12): 2017-2024 (in Chinese). | |
29 | 李周复. 风洞特种试验技术[M]. 北京: 航空工业出版社, 2010: 287-327. |
LI Z F. Wind tunnel special test technology[M]. Beijing: Aviation Industry Press, 2010: 287-327 (in Chinese). |
/
〈 |
|
〉 |