滑移流区化学非平衡流中气动热环境的数值模拟
收稿日期: 2022-09-07
修回日期: 2022-09-27
录用日期: 2022-11-29
网络出版日期: 2022-12-14
基金资助
江苏高校优势学科建设工程(PAPD)
Numerical simulation of aero-heating in slip flow regime with chemical non-equilibrium
Received date: 2022-09-07
Revised date: 2022-09-27
Accepted date: 2022-11-29
Online published: 2022-12-14
Supported by
Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
针对滑移流区化学非平衡流中的气动热环境预测问题,采用多组分化学非平衡纳维-斯托克斯(N-S)方程对轨道验证飞行器(OREX)进行数值模拟,对比了有限催化和非催化、滑移和无滑移壁面条件下的气动加热,研究了壁面催化和滑移效应对气动热的影响规律,并分析了影响气动热的主要机制。结果表明:壁面催化和滑移效应均会影响流场物理量分布,高度为92.82 km时对激波脱体距离的影响较为明显;随着高度减小,有限催化与非催化壁面间的热流偏差增大,而滑移与无滑移壁面间的热流偏差减小;高度低于92.82 km时有限催化壁面计算得到的驻点热流值与飞行数据吻合较好,偏差均在11%以内;机制分析发现,催化效应对壁面附近的组分分布影响较大,滑移边界条件中的温度跳跃条件对壁面附近的温度分布影响显著。
刘重晓 , 王江峰 . 滑移流区化学非平衡流中气动热环境的数值模拟[J]. 航空学报, 2023 , 44(16) : 127980 -127980 . DOI: 10.7527/S1000-6893.2022.27980
Numerical simulation predicting the aero-heating of chemical non-equilibrium flow in the slip flow regime has been carried out for the Orbital Reentry Experiment (OREX) vehicle by solving multicomponent chemical non-equilibrium Navier-Stokes(N-S) equations. A detailed comparison is made between the finite rate catalytic and non-catalytic, slip and no-slip wall conditions, and the influence of surface catalysis and slip effects on aero-heating is studied. The main mechanism affecting aero-heating is also analyzed. The results show that surface catalysis and slip effects influence the distribution of flow properties, with a strong impact on the shock stand-off distance at 92.82 km. With the decrease in altitude, the gap of heat flux increases between the finite rate catalytic and non-catalytic wall conditions, while decreases between the slip and no-slip wall conditions. At an altitude lower than 92.82 km, the stagnation point heat flux of the finite rate catalytic wall agrees well with the flight data, with the deviation within 11%. In the area near the wall, the catalytic effect has a considerable influence on species distribution, while the temperature jump condition of slip effects exerts a significant impact on the temperature distribution.
1 | BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford: Clarendon Press, 1994:219-255. |
2 | GRAD H. Asymptotic theory of the Boltzmann equation[J]. Physics of Fluids, 1963, 6(2): 147-181. |
3 | BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511-525. |
4 | GRAD H. On the kinetic theory of rarefied gases[J]. Communications on Pure and Applied Mathematics, 1949, 2(4): 331-407. |
5 | 江中正, 赵文文, 袁震宇, 等. 基于非线性耦合本构关系的改进边界条件[J]. 航空学报, 2018, 39(10): 122057. |
JIANG Z Z, ZHAO W W, YUAN Z Y, et al. An enhanced wall-boundary condition based on nonlinear coupled constitutive relations[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 122057 (in Chinese). | |
6 | LI Z H, ZHANG H X. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J]. Journal of Computational Physics, 2004, 193(2): 708-738. |
7 | LI Z H, ZHANG H X. Gas-kinetic numerical studies of three-dimensional complex flows on spacecraft re-entry[J]. Journal of Computational Physics, 2009, 228(4): 1116-1138. |
8 | LOFTHOUSE A J, SCALABRIN L C, BOYD I D. Velocity slip and temperature jump in hypersonic aerothermodynamics[J]. Journal of Thermophysics and Heat Transfer, 2008, 22(1): 38-49. |
9 | BHIDE P M, NOMPELIS I, SCHWARTZENTRUBER T, et al. Velocity-slip and temperature-jump effects in near-continuum hypersonic flows[J]. AIAA Journal, 2021, 59(10): 3815-3830. |
10 | 黄飞, 张亮, 程晓丽, 等. 连续流失效对近空间飞行器气动特性的影响[J]. 空气动力学学报, 2013, 31(5):623-628, 640. |
HUANG F, ZHANG L, CHENG X L, et al. Effects of continuum breakdown on aerodynamics of near space vehicle[J]. Acta Aerodynamica Sinica, 2013, 31(5):623-628, 640 (in Chinese). | |
11 | 王国林, 周印佳, 金华, 等. 催化效应对气动热环境影响的流动-传热耦合数值分析[J]. 实验流体力学, 2019, 33(3): 13-19. |
WANG G L, ZHOU Y J, JIN H, et al. Study on the influence of catalytic effect on the aerothermal environment by the flow-heat transfer coupling numerical analysis[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 13-19 (in Chinese). | |
12 | MACCORMACK R. Nonequilibrium effects for hypersonic transitional flows using continuum approach[C]∥ 27th Aerospace Sciences Meeting. Reston: AIAA, 1989. |
13 | KUROTAKI T. Construction of catalytic model on SiO2-based surface and application to real trajectory[C]∥ 34th Thermophysics Conference. Reston: AIAA, 2000. |
14 | GUPTA R N. Reevaluation of flight-derived surface recombination-rate expressions for oxygen and nitrogen[J]. Journal of Spacecraft and Rockets, 1996, 33(3): 451-453. |
15 | STEWART D A. Surface catalysis and characterization of proposed candidate TPS for access-to-space vehicles[R]. Washington : NASA Ames Research Center, 1997. |
16 | GOKCEN T. Effects of flowfield nonequilibrium on convective heat transfer to a blunt body[C]∥ 34th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1996. |
17 | MACCORMACK R, CHAPMAN D. Computational fluid dynamics near the continuum limit[C]∥ 8th Computational Fluid Dynamics Conference. Reston: AIAA, 1987. |
18 | BISCEGLIA S, RANUZZI G. Real gas effects on a planetary re-entry capsule[C]∥ AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005. |
19 | GUPTA R N, MOSS J N, PRICE J M. Assessment of thermochemical nonequilibrium and slip effects for orbital re-entry experiment[J]. Journal of Thermophysics and Heat Transfer, 1997, 11(4): 562-569. |
20 | GUPTA R N. Viscous shock-layer study of thermochemical nonequilibrium[J]. Journal of Thermophysics and Heat Transfer, 1996, 10(2): 257-266. |
21 | 苗文博, 程晓丽, 艾邦成, 等. 高超声速流动壁面催化复合气动加热特性[J]. 宇航学报, 2013, 34(3): 442-446. |
MIAO W B, CHENG X L, AI B C, et al. Surface catalysis recombination aero-heating characteristics of hypersonic flow[J]. Journal of Astronautics, 2013, 34(3): 442-446 (in Chinese). | |
22 | 苗文博, 程晓丽, 艾邦成. 来流条件对热流组分扩散项影响效应分析[J]. 空气动力学学报, 2011, 29(4):476-480. |
MIAO W B, CHENG X L, AI B C. Flow configuration effects on mass diffusion part ofheat-flux in thermal-chemical flows[J]. Acta Aerodynamica Sinica, 2011, 29(4):476-480 (in Chinese). | |
23 | 粟斯尧, 石义雷, 柳森, 等. 有限催化对返回舱气动热环境影响[J]. 空气动力学学报, 2018, 36(5):878-884. |
SU S Y, SHI Y L, LIU S, et al. Finite-rate surface catalysis effects on aero-heating environment of a reentry capsule[J]. Acta Aerodynamica Sinica, 2018, 36(5):878-884 (in Chinese). | |
24 | 丁明松, 董维中, 高铁锁, 等. 局部催化特性差异对气动热环境影响的计算分析[J]. 航空学报, 2018, 39(3): 44-54. |
DING M S, DONG W Z, GAO T S, et al. Computational analysis of influence of differences in local catalytic properties on aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 44-54 (in Chinese). | |
25 | LIOU M S. Progress towards an improved CFD method— AUSM+ [C]∥ 12th Computational Fluid Dynamics Conference. Reston: AIAA, 1995. |
26 | 潘沙. 高超声速气动热数值模拟方法及大规模并行计算研究[D]. 长沙: 国防科学技术大学,2010 : 89-91. |
PAN S. Numerical simulation of hypersonic aerodynamics and large-scale parallel computation[D]. Changsha: National University of Defense Technology, 2010: 89-91 (in Chinese). | |
27 | BLOTTNER F G. Viscous shock layer at the stagnation point with nonequilibrium air chemistry[J]. AIAA Journal, 1969, 7(12): 2281-2288. |
28 | GUPTA R, YOS J, THOMPSON R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K[R]. Washington, D.C. : NASA Langley Research Center, 1989. |
29 | MAXWELL J C. On stresses in rarified gases arising from inequalities of temperature[J]. Philosophical Transactions of the Royal Society of London, 1879, 170: 231-256. |
30 | LOCKERBY D A, REESE J M, GALLIS M A. Capturing the Knudsen layer in continuum-fluid models of nonequilibrium gas flows[J]. AIAA Journal, 2005, 43(6): 1391-1393. |
31 | 曹文斌, 李桦, 高洪贺. 滑移边界条件的收敛性分析及应用[J]. 国防科技大学学报, 2013, 35(1): 12-18. |
CAO W B, LI H, GAO H H. Convergence analysis and application of the slip boundary conditions[J]. Journal of National University of Defense Technology, 2013, 35(1): 12-18 (in Chinese). | |
32 | MOSS J, SIMMONDS A. Nonequilibrium effects for hypersonic transitional flows[C]∥ 25th AIAA Aerospace Sciences Meeting. Reston: AIAA, 1987. |
33 | YAMAMOTO Y, YOSHIOKA M. CFD and FEM coupling analysis of OREX aerothermodynamic flight data[C]∥ 30th Thermophysics Conference. Reston: AIAA, 1995. |
/
〈 |
|
〉 |