矩形脉冲射流对长穿透模态减阻降热的影响
收稿日期: 2022-09-05
修回日期: 2022-09-23
录用日期: 2022-11-16
网络出版日期: 2022-12-14
基金资助
深圳市科技计划基础研究项目(JCYJ20170307151117299)
Effects of rectangular pulsed jets on drag and heat reduction of long penetration mode
Received date: 2022-09-05
Revised date: 2022-09-23
Accepted date: 2022-11-16
Online published: 2022-12-14
Supported by
Shenzhen Science and Technology Plan Basic Research Project(JCYJ20170307151117299)
逆向喷流作为一种主动减阻降热技术,受到了广泛的关注,但逆向喷流长穿透模态下的弓形激波会出现大幅振荡,流场出现极不稳定的现象。以高超声速流动中的球头体为研究对象,研究矩形脉冲射流对长模态流动不稳定性的可能抑制或缓解作用。研究发现,与稳态射流形成的长穿透模态相比,不同频率和振幅的矩形脉冲射流对长模态均有明显的降热效果。此外,长模态阻力系数的最小值所对应的瞬时激波脱体距离并不是最大值,两者有一定的相位差。相对于稳态射流形成的长模态激波脱体距离的大幅度振荡,矩形脉冲射流对长模态振荡有明显的抑制作用。本文研究结果对高超声速矩形脉冲射流技术的工程应用和发展具有一定的参考意义。
郭晓东 , 周超英 , 万书翱 . 矩形脉冲射流对长穿透模态减阻降热的影响[J]. 航空学报, 2023 , 44(16) : 127967 -127967 . DOI: 10.7527/S1000-6893.2022.27967
As an active drag and heat reduction technology, the counterflowing jet has received extensive attention. However, the bow shock in the long penetration mode of counterflowing jet will oscillate significantly, and the flow field will be extremely unstable. Taking the hemispherical body in hypersonic flow as the research object, the possible suppression or mitigation effect of rectangular pulse jet on long mode flow instability is studied. It is found that compared with the steady jet forming the long penetration mode, the rectangular pulsed jet with different frequencies and amplitudes has an obvious heat reduction effect on the long penetration mode. In addition, while the drag coefficient of the long penetration mode takes the minimum value, the corresponding instantaneous standoff distance does not reach the maximum value, with a certain phase difference between them. The large oscillation of the long penetration mode shock standoff distance formed by the steady jet is clearly suppressed by the rectangular pulsed jet. The research results provide reference for the application and development of the hypersonic rectangular pulsed jet technology.
1 | HUANG W, CHEN Z, YAN L, et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: A review[J]. Progress in Aerospace Sciences, 2019, 105: 31-39. |
2 | GERDROODBARY M B. Numerical analysis on cooling performance of counterflowing jet over aerodisked blunt body[J]. Shock Waves, 2014, 24(5): 537-543. |
3 | 张涵信, 黄洁, 高树椿. 带尖针杆的钝体粘性绕流的数值模拟[J]. 航空学报, 1994, 15(5): 519-525. |
ZHANG H X, HUANG J, GAO S C. Numerical simulation of hypersonic flow over axisymmetric spiked body[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(5): 519-525. (in Chinese) | |
4 | PHAM H S, SHODA T, TAMBA T, et al. Impacts of laser energy deposition on flow instability over double-cone model[J]. AIAA Journal, 2017, 55(9): 2992-3000. |
5 | 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. |
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese). | |
6 | 马正雪, 罗振兵, 赵爱红, 等. 高超声速流场等离子体合成射流逆向喷流特性[J]. 航空学报, 2022, 43(S2): 727747. |
MA Z X, LUO Z B, ZHAO A H, et al. Reverse jet characteristics of plasma synthetic jet in hypersonic flow field[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S2): 727747 (in Chinese). | |
7 | 吴忧, 徐旭, 陈兵, 等. 高马赫数下横/逆向喷流干扰流场数值研究[J]. 航空学报, 2021, 42(S1): 726359. |
WU Y, XU X, CHEN B, et al. Numerical study on transverse/opposing jet interaction flowfield under high Mach number[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726359 (in Chinese). | |
8 | 戎宜生, 刘伟强. 再入飞行器鼻锥逆向喷流对流场及气动热的影响[J]. 航空学报, 2010, 31(8): 1552-1557. |
RONG Y S, LIU W Q. Influence of opposing jet on flow field and aerodynamic heating at nose of a reentry vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1552-1557 (in Chinese). | |
9 | ZHOU C Y, JI W Y, ZHANG X W, et al. Numerical investigation on counter-flow jet drag reduction of a spherical body[J]. Engineering Mechanics, 2013, 30(1):441-447. |
10 | HUANG J, YAO W X. A novel non-ablative thermal protection system with combined spike and opposing jet concept[J]. Acta Astronautica, 2019, 159: 41-48. |
11 | ZHANG R R, DONG M Z, HUANG W, et al. Drag and heat flux reduction mechanism induced by the combinational forward-facing cavity and pulsed counterflowing jet configuration in supersonic flows[J]. Acta Astronautica, 2019, 160: 62-75. |
12 | HUANG W, ZHAO Z T, YAN L, et al. Parametric study on the drag and heat flux reduction mechanism of forward-facing cavity on a blunt body in supersonic flows[J]. Aerospace Science and Technology, 2017, 71: 619-626. |
13 | FINLEY P J. The flow of a jet from a body opposing a supersonic free stream[J]. Journal of Fluid Mechanics, 1966, 26(2): 337-368. |
14 | ADAMS R. The effects of retrorockets on the aerodynamic characteristics of conical aeroshell planetary entry vehicles: AIAA-1970-0219[R]. Reston: AIAA, 1970. |
15 | BILAL H, SHAH S, LU X Y. Computational study of drag reduction at various freestream flows using a counterflow jet from a hemispherical cylinder[J]. Engineering Applications of Computational Fluid Mechanics, 2010, 4(1): 150-163. |
16 | KULKARNI V, REDDY K. Counterflow drag reduction studies for a blunt cone in high enthalpy flow[J]. International Journal of Hypersonics, 2010, 1(1): 69-76. |
17 | FOMICHEV V P, FOMIN V M, KOROTAEVA T A, et al. Hypersonic flow around a blunted body with counterflow plasma jet[R]. Novosibirsk: Institute of Theoretical and Applied Mechanics, 2002. |
18 | SHEN B X, LIU W Q, YIN L. Drag and heat reduction efficiency research on opposing jet in supersonic flows[J]. Aerospace Science and Technology, 2018, 77: 696-703. |
19 | ZHANG R R, HUANG W, LI L Q, et al. Drag and heat flux reduction induced by the pulsed counterflowing jet with different periods on a blunt body in supersonic flows[J]. International Journal of Heat and Mass Transfer, 2018, 127: 503-512. |
20 | GUO J H, LIN G P, BU X Q, et al. Parametric study on the heat transfer of a blunt body with counterflowing jets in hypersonic flows[J]. International Journal of Heat and Mass Transfer, 2018, 121: 84-96. |
21 | ZHOU C Y, JI W Y. A three-dimensional numerical investigation on drag reduction of a supersonic spherical body with an opposing jet[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(2): 163-177. |
22 | LI S B, HUANG W, LEI J, et al. Drag and heat reduction mechanism of the porous opposing jet for variable blunt hypersonic vehicles[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1087-1098. |
23 | DENG F, XIE F, HUANG W, et al. Numerical exploration on jet oscillation mechanism of counterflowing jet ahead of a hypersonic lifting-body vehicle[J]. Science China Technological Sciences, 2018, 61(7): 1056-1071. |
24 | ZHANG R R, HUANG W, YAN L, et al. Drag and heat flux reduction induced by the pulsed counterflowing jet with different waveforms on a blunt body in supersonic flows[J]. Acta Astronautica, 2019, 160: 635-645. |
25 | ASO S, HAYASHI K, MIZOGUCHI M. A study on aerodynamic heating reduction due to opposing jet in hypersonic flow:AIAA-2002-0646[R]. Reston: AIAA, 2002. |
26 | MEN'SHOV I S, NAKAMURA Y. Numerical simulations and experimental comparisons for high-speed nonequilibrium air flows[J]. Fluid Dynamics Research, 2000, 27(5): 305-334. |
27 | PARK C. Assessment of two-temperature kinetic model for ionizing air[J]. Journal of Thermophysics and Heat Transfer, 1989, 3(3): 233-244. |
28 | GNOFFO P A, GUPTA R N, SHINN J L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium[R]. Washington, D.C.: NASA, 1989. |
29 | SARMA G S R. Physico-chemical modelling in hypersonic flow simulation[J]. Progress in Aerospace Sciences, 2000, 36(3-4): 281-349. |
30 | CANDLER G V, NOMPELIS I. Computational fluid dynamics for atmospheric entry: Mathematics-2009- 58908 [R]: Minnesota: University of Minnesota, 2009. |
31 | PARK C. Problems of rate chemistry in the flight regimes of aeroassisted orbital transfer vehicles: AIAA-1984-1730[R]. Reston: AIAA, 1984. |
32 | BIRD G A. The DSMC method[M]. 2nd ed. Sydney: Physics, 2013: 105-107. |
33 | CASSEAU V. An open-source CFD solver for planetary entry[D]. Glasgow: University of Strathclyde, 2017:13-15. |
34 | ZHANG R R, HUANG W, YAN L, et al. Numerical investigation of drag and heat flux reduction mechanism of the pulsed counterflowing jet on a blunt body in supersonic flows[J]. Acta Astronautica, 2018, 146: 123-133. |
35 | MACLEAN M, MARINEAU E, PARKER R, et al. Effect of surface catalysis on measured heat transfer in expansion tunnel facility[J]. Journal of Spacecraft and Rockets, 2013, 50(2): 470-475. |
36 | YANG J L, LIU M. Numerical analysis of hypersonic thermochemical non-equilibrium environment for an entry configuration in ionized flow[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2641-2654. |
37 | MEN'SHOV I S, NAKAMURA Y. Numerical simulations and experimental comparisons for high-speed nonequilibrium air flows[J]. Fluid Dynamics Research, 2000, 27(5): 305-334. |
38 | 张智超, 高振勋, 蒋崇文, 等. 高超声速气动热数值计算壁面网格准则[J]. 北京航空航天大学学报, 2015, 41(4): 594-600. |
ZHANG Z C, GAO Z X, JIANG C W, et al. Grid generation criterions in hypersonic aeroheating computations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 594-600 (in Chinese). | |
39 | YANG X F, TANG W, GUI Y W, et al. Hypersonic static aerodynamics for Mars science laboratory entry capsule[J]. Acta Astronautica, 2014, 103: 168-175. |
40 | BIBI A, MAQSOOD A, SHERBAZ S, et al. Drag reduction of supersonic blunt bodies using opposing jet and nozzle geometric variations[J]. Aerospace Science and Technology, 2017, 69: 244-256. |
41 | GUO X D, ZHOU C Y. Unsteady behavior of long-penetration mode with a counterflowing jet[J]. Journal of Aerospace Engineering, 2023, 36(1): 04022111. |
/
〈 |
|
〉 |