激波风洞两级入轨飞行器纵向级间分离试验技术
收稿日期: 2022-10-18
修回日期: 2022-10-25
录用日期: 2022-11-30
网络出版日期: 2022-12-06
基金资助
国家自然科学基金(11672357)
Test technology of longitudinal stage separation for two-stage-to-orbit vehicle in shock tunnel
Received date: 2022-10-18
Revised date: 2022-10-25
Accepted date: 2022-11-30
Online published: 2022-12-06
Supported by
National Natural Science Foundation of China(11672357)
高超声速多体分离问题是航天多体飞行器研发中的关键技术问题,基于分离过程中高速流动的复杂性,对高速多体分离的风洞试验研究极具挑战性,特别是激波风洞分离试验。激波风洞具有高速、高焓试验气流特点,更准确评估高超声速分离气动力/热特性,但是其有效试验时间短(ms量级),进行主动式动态级间分离试验极其困难。提出一种应用于激波风洞主动式多体分离试验的高速气动发射系统(HPELS),使得模型在短试验时间内完成主动分离测试,详细介绍了HPELS延迟时间、模型分离时间等精确的时间标定及时序控制方法。针对分离过程中模型的运动轨迹及气动力参数的高性能评估,发展了基于纹影图像的非接触式分离运动轨迹捕获及气动力参数测量技术。两级入轨(TSTO)飞行器的安全级间分离是典型的高速多体分离问题,设计了并联式TSTO飞行器并针对作者提出的纵向分离方案,在JF-12复现飞行条件激波风洞验证了高速动态多体分离试验技术应用的有效性,同时首次在激波风洞对TSTO纵向分离方案进行了原理性验证。初步对比结果显示,试验结果与数值计算结果具有良好的一致性。
王粤 , 汪运鹏 , 姜宗林 . 激波风洞两级入轨飞行器纵向级间分离试验技术[J]. 航空学报, 2023 , 44(17) : 128126 -128126 . DOI: 10.7527/S1000-6893.2022.28126
The multi-body separation problem in hypersonic flow is a key technical issue in the research and development of aerospace multibody vehicles. Due to the complexity of high-speed flow during separation, the wind tunnel test study is extremely challenging, particularly the shock tunnel separation test. The test flow of the shock tunnel has the characteristics of high flow speed and high enthalpy, which can simulate the flow characteristics with gas effect at high temperature and duplicate the reliable aerodynamic and thermal characteristics of hypersonic multibody separation. However, its effective test time is short in order of milliseconds; therefore it is difficult to conduct dynamic tests of separation. In this study, a High-speed Pneumatic Ejection to Launch vehicle model System (HPELS) applied to the shock tunnel is proposed, which enables the model to actively complete the separation within the short test time. The precise time calibration and timing control methods of HPELS delay time and separation time are introduced in detail. For the high-performance evaluation of the separation trajectory and aerodynamic parameters during separation, a non-contact separation motion trajectory capture and aerodynamic parameter measurement technology based on schlieren images is developed. The safety stage separation of Two Stages to Orbit (TSTO) vehicle is a typical high-speed separation problem. In view of the longitudinal separation scheme and parallel-staged TSTO vehicle proposed by the author, the effectiveness of the application of the high-speed dynamic multi-body separation test technology is verified in the JF-12 duplicated flight conditions shock tunnel. Meanwhile, the principle of the parallel-staged TSTO safety longitudinal stage separation scheme is verified in the shock tunnel for the first time. Comparison of the experimental results with the numerical results shows good agreement.
1 | 佘文学, 刘晓鹏, 刘凯. 桑格尔空天飞行器技术途径分析与思考[J]. 火箭推进, 2021, 47(6): 11-20. |
SHE W X, LIU X P, LIU K. Analysis and thinking on technical approach of Sanger aerospace vehicle[J]. Journal of Rocket Propulsion, 2021, 47(6): 11-20 (in Chinese). | |
2 | DISSEL A F, KOTHARI A P, LEWIS M J. Investigation of two-stage-to-orbit airbreathing launch-vehicle configurations[J]. Journal of Spacecraft and Rockets, 2006, 43(3): 568-574. |
3 | WANG Y P, OZAWA H, KOYAMA H, et al. Abort separation of launch escape system using aerodynamic interference[J]. AIAA Journal, 2012, 51(1): 270-275. |
4 | XIANG G X, WANG C, TENG H H, et al. Shock/shock interactions between bodies and wings[J]. Chinese Journal of Aeronautics, 2018, 31(2): 255-261. |
5 | 王世芬, 王宇, 刘鹏. 高超音速后掠激波与边界层干扰流场特性[J]. 航空学报, 1993, 14(9): 449-454. |
WANG S F, WANG Y, LIU P. Surface feature in hypersonic swept shock and boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(9): 449-454 (in Chinese). | |
6 | 宋威, 艾邦成. 多体空气动力学研究进展[J]. 力学学报, 2022, 54(6): 1461-1484. |
SONG W, AI B C. Research progress on multibody aerodynamics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1461-1484 (in Chinese). | |
7 | 宋威, 艾邦成. 多体分离动力学研究进展[J]. 航空学报, 2022, 43(9): 025950. |
SONG W, AI B C. Multibody separation dynamics: review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 025950 (in Chinese). | |
8 | 张鲁民, 柳森. 航天飞机系统两体分离问题的探讨[J]. 空气动力学学报, 1990, 8(2): 174-180. |
ZHANG L M, LIU S. Investigation of separation about the parallel space shuttle system[J]. Acta Aerodynamica Sinica, 1990, 8(2): 174-180 (in Chinese). | |
9 | 赵飞, 刘丽玲, 石泳, 等. 类X-43A飞行器高超声速分离仿真[J]. 航空学报, 2022, 43(5): 125171. |
ZHAO F, LIU L L, SHI Y, et al. Hypersonic separation simulation of aerocraft similar to X-43A[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 125171 (in Chinese). | |
10 | LIU Y A, QIAN Z S, LU W B, et al. Numerical investigation on the safe stage-separation mode for a TSTO vehicle[J]. Aerospace Science and Technology, 2020, 107: 106349. |
11 | 王粤, 汪运鹏, 薛晓鹏, 等. TSTO马赫7安全级间分离问题的数值研究[J]. 力学学报, 2022, 54(2): 526-542. |
WANG Y, WANG Y P, XUE X P, et al. Numerical investigation on safe stage separation problem of a tsto model at Mach 7[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 526-542 (in Chinese). | |
12 | PARK S H, KIM J, CHOI I, et al. Experimental study of separation behavior of two bodies in hypersonic flow[J]. Acta Astronautica, 2021, 181: 414-426. |
13 | TIAN S L, FU J W, CHEN J T. A numerical method for multi-body separation with collisions[J]. Aerospace Science and Technology, 2021, 109: 106426. |
14 | BORDELON W, FROST A, REED D. Stage separation wind tunnel tests of a generic TSTO launch vehicle[C]∥21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003. |
15 | OZAWA H, HANAI K, KITAMURA K, et al. Experimental investigation of shear-layer/body interactions in TSTO at hypersonic speeds[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
16 | MURPHY K, BUNING P, PAMADI B, et al. Overview of transonic to hypersonic stage separation tool development for multi-stage-to-orbit concepts[C]∥24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2004. |
17 | 吴继飞, 王元靖, 罗新福, 等. 高超声速风洞多体干扰与分离试验技术[J]. 实验流体力学, 2010, 24(3): 99-102. |
WU J F, WANG Y J, LUO X F, et al. A test technique for multi-boby interference and separation in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 99-102 (in Chinese). | |
18 | 解福田, 邹东阳, 钟俊, 等. 基于网格测力数据的多体分离轨迹预测方法研究[J]. 推进技术, 2022, 43(8): 154-164. |
XIE F T, ZOU D Y, ZHONG J, et al. Multi-body separation trajectory prediction based on grid force measurement data[J]. Journal of Propulsion Technology, 2022, 43(8): 154-164 (in Chinese). | |
19 | 林敬周. 我国首次形成高超声速风洞双分离轨迹捕获(CTS)试验能力[J]. 实验流体力学, 2021, 35(1): 126. |
LIN J Z. China’s first hypersonic wind tunnel dual CTS test capability formed in CARDC[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 126 (in Chinese). | |
20 | 沈清. TSTO级间分离气动问题与试验模型——大会特邀报告[C]∥第十二届全国实验流体力学学术会议. 北京: 中国力学学会, 2021. |
SHEN Q. Aerodynamic problems of stage separation and test model of TSTO——invited lecture [C]∥12th National Conference on Experiments in Fluid Mechanics. Beijing: The Chinese Society of Theoretical and Applied Mechanics, 2021 (in Chinese). | |
21 | 左光, 艾邦成. 先进空间运输系统气动设计综述[J]. 航空学报, 2021, 42(2): 624077. |
ZUO G, AI B C. Aerodynamic design of advanced space transportation system: review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 624077 (in Chinese). | |
22 | 包为民, 汪小卫. 航班化航天运输系统发展展望[J]. 宇航总体技术, 2021, 5(3): 1-6. |
BAO W M, WANG X W. Prospect of airline-flight-mode aerospace transportation system[J]. Astronautical Systems Engineering Technology, 2021, 5(3): 1-6 (in Chinese). | |
23 | WANG Y, WANG Y P, JIANG Z L. Numerical investigation of aerodynamic separation schemes for two-stage-to-orbit-like two-body system[J]. Aerospace Science and Technology, 2022, 131: 107995. |
24 | 王粤, 汪运鹏, 王春, 等. 一种并联两级入轨飞行器纵向分离方案的数值研究[J]. 航空学报, 2023, 44(11): 127634. |
WANG Y, WANG Y P, WANG C, et al. Numerical study of the longitudinal stage separation for parallel-stage two-stage-to-orbit vehicle[J]. Acta Aeronauticaet Astronautica Sinica, 2023, 44(11): 127634 (in Chinese). | |
25 | WANG Y E, WANG Y P, WANG C, et al. Numerical investigation on longitudinal stage separation of spiked two-stage-to-orbit vehicle[J]. Journal of Spacecraft and Rockets, 2023, 60(1): 215-229. |
26 | GARCON F, TARAVEL P, RAFFIN J C. Recent developments in captive trajectory systems of the ONERA Modane wind tunnels[C]∥39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. |
27 | JIANG Z L. Experiments and development of long-test-duration hypervelocity detonation-driven shock tunnel (LHDst)[C]∥Proceedings of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014. |
28 | WANG Y P, HU Z M, LIU Y F, et al. Starting process in a large-scale shock tunnel[J]. AIAA Journal, 2016, 54(4): 1240-1249. |
29 | 李周复. 风洞特种试验技术[M]. 北京: 航空工业出版社, 2010. |
LI Z F. Wind tunnel special test technology[M]. Beijing: Aviation Industry Press, 2010 (in Chinese). | |
30 | 李战华, 段俐, 谢季佳. 力学实验原理与技术[M]. 北京: 科学出版社, 2020. |
LI Z H, DUAN L, XIE J J. Principles and techniques in experiments of mechanics[M]. Beijing: Science Press, 2020 (in Chinese). | |
31 | EDNEY B E. Effects of shock impingement on the heat transfer around blunt bodies[J]. AIAA Journal, 1968, 6(1): 15-21. |
32 | OZAWA H, MORI K, NAKAMURA Y. Experimental analysis of TSTO aerodynamic interactions based on oil flow patterns at hypersonic speed[C]∥47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
33 | MURPHY K, SCALLION W. Experimental stage separation tool development in NASA langley’s aerothermodynamics laboratory[C]∥AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2005. |
34 | 林敬周, 解福田, 钟俊, 等. 高超声速风洞双体同步分离捕获轨迹试验技术[J]. 空气动力学学报, 2023, 41(5): 77-86. |
LIN J Z, XIE F T, ZHONG J, et al. Dual-body synchronous captive trajectory test technique in hypersonic wind tunnel [J]. Acta Aerodynamic Sinica, 2022, 41(5): 77-86 (in Chinese). | |
35 | 魏毅寅, 张红文, 王长青. 可重复使用空间运输系统[M]. 北京:国防工业出版社, 2015: 77-161. |
WEI Y Y, ZHANG H W, WANG C Q. Reusable space transportation systems [M]. Beijing: National Defense Industry Press, 2015: 77-161 (in Chinese). |
/
〈 |
|
〉 |