大型复合材料机身壁板多机器人协同装配调姿控形方法
收稿日期: 2022-09-14
修回日期: 2022-10-09
录用日期: 2022-11-07
网络出版日期: 2022-12-06
基金资助
国家自然科学基金(52105502);国家商用飞机制造工程技术研究中心创新基金(COMAC-SFGS-2019-263);中央高校基本科研业务费专项资金(3042021601)
Pose and shape adjustment method for CFRP fuselage panel based on multi-robot collaboration
Received date: 2022-09-14
Revised date: 2022-10-09
Accepted date: 2022-11-07
Online published: 2022-12-06
Supported by
National Natural Science Foundation of China(52105502);Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing(COMAC-SFGS-2019-263);Fundamental Research Funds for the Central Universities(3042021601)
针对飞机大型复合材料机身壁板尺寸大、曲率大、外形偏差不易控制等装配工艺特点,提出了一种基于多机器人协同的复合材料机身壁板装配调姿控形方法。实现了各机器人末端夹持单元预定位,并建立了多机器人柔性装配工装的全局运动学模型;通过多机器人主从协同运动实现复合材料机身壁板的调姿定位,分析了协同运动误差;构建了壁板形状控制点偏差与机器人运动量的变换关系,通过机器人的运动实现了复合材料机身壁板的形状控制。最后,对所提出的方法进行了应用实验验证,结果表明采用主从协同运动的调姿方法,调姿定位精度优于0.08 mm。形状调控后复合材料机身壁板形状精度可达0.6 mm,证明了该方法的可行性和有效性。
杨应科 , 李东升 , 沈立恒 , 李汝鹏 , 翟雨农 . 大型复合材料机身壁板多机器人协同装配调姿控形方法[J]. 航空学报, 2023 , 44(14) : 428006 -428006 . DOI: 10.7527/S1000-6893.2022.28006
Aiming at the assembly process characteristics of Carbon Fiber Reinforced Plastic (CFRP) fuselage panels, such as large size, large curvature, and difficulty to reduce the shape deviation, a pose and shape adjustment method for CFRP fuselage panel based on multi-robot collaboration is proposed. The pre-positioning of the clamping units on each robot is realized, and the global kinematic model of the multi-robot flexible assembly system is established. Through multi-robot collaborative motion, the pose adjustment of the composite panel is achieved, with the error analysis of the collaborative motion. The relationship between the deviation of shape-control point and the robot motion is established, the shape of the composite fuselage panel is then adjusted through the robot movement. Finally, the proposed method is verified by application experiments. The results show that the pose adjustment method can achieve a positioning accuracy of better than 0.08 mm, and the shape accuracy of the composite fuselage panel can reach 0.6 mm, which demonstrates the feasibility and effectiveness of the method.
1 | 薛红前. 飞机装配工艺学[M]. 西安: 西北工业大学出版社, 2015: 27-28. |
XUE H Q. Aircraft assembly technology[M]. Xi’an: Northwestern Polytechnical University Press, 2015: 27-28 (in Chinese). | |
2 | YUE X W, WEN Y C, HUNT J H, et al. Surrogate model-based control considering uncertainties for composite fuselage assembly[J]. Journal of Manufacturing Science and Engineering, 2018, 140(4): 041017. |
3 | Airbus. Advanced lightweight materials [EB/OL]. (2022-10-18) [2022-10-20]. : . |
4 | 李东升, 翟雨农, 李小强. 飞机复合材料结构少无应力装配方法研究与应用进展[J]. 航空制造技术, 2017, 60(9): 30-34. |
LI D S, ZHAI Y N, LI X Q. Research and application advances of stress-less assembly methods for composite airframe[J]. Aeronautical Manufacturing Technology, 2017, 60(9): 30-34 (in Chinese). | |
5 | 潘国威, 陈文亮, 王珉. 应用于飞机装配的并联机构技术发展综述[J]. 航空学报, 2019, 40(1): 522572. |
PAN G W, CHEN W L, WANG M. A review of parallel kinematic mechanism technology for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522572 (in Chinese). | |
6 | 郭恩明. 国外飞机柔性装配技术[J]. 航空制造技术, 2005, 48(9): 28-32. |
GUO E M. Foreign aircraft flexible assembly technology[J]. Aeronautical Manufacturing Technology, 2005, 48(9): 28-32 (in Chinese). | |
7 | Advanced Integration Technology. Positioning System [EB/OL]. (2015-7-28) [2022-7-8]. : . |
8 | ARISTA R, FALGARONE H. Flexible best fit assembly of large aircraft components. airbus A350 XWB case study [M]∥Product Lifecycle Management and the Industry of the Future. Cham: Springer International Publishing, 2017: 152-161. |
9 | Dr SCHNEIDER T. Innovative approach for modular and flexible positioning systems for large aircraft assembly[C]∥SAE Technical Paper Series. 400 Commonwealth Drive, 2015: 2015-01-2503. |
10 | HUANG J, YU L, ZHANG Y L, et al. A new positioning device designed for aircraft automated alignment system[C]∥SAE Technical Paper Series. 400 Commonwealth Drive, 2019: 2019-01-1883. |
11 | MBAREK T, MEISSNER A, BIYIKLIOGLU N. Positioning system for the aircraft structural assembly[J]. SAE International Journal of Aerospace, 2011, 4(2): 1038-1047. |
12 | BI Y B, YAN W M, KE Y L. Numerical study on predicting and correcting assembly deformation of a large fuselage panel during digital assembly[J]. Assembly Automation, 2014, 34(2): 204-216. |
13 | CHEN Z H, DU F Z, TANG X Q. Position and orientation best-fitting based on deterministic theory during large scale assembly[J]. Journal of Intelligent Manufacturing, 2018, 29(4): 827-837. |
14 | DENG Z P, HUANG X, LI S G, et al. On-line calibration and uncertainties evaluation of spherical joint positions on large aircraft component for zero-clearance posture alignment[J]. Robotics and Computer-Integrated Manufacturing, 2019, 56: 38-54. |
15 | MEI B, YANG Y T, ZHU W D. Enhanced pose adjustment system for wing-box assembly in large aircraft manufacturing[J]. Journal of Computing and Information Science in Engineering, 2022, 22(2): 021011. |
16 | 邱宝贵, 蒋君侠, 毕运波, 等. 大型飞机机身调姿与对接试验系统[J]. 航空学报, 2011, 32(5): 908-919. |
QIU B G, JIANG J X, BI Y Bet al. Posture alignment and joining test system for large aircraft fuselages[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 908-919 (in Chinese). | |
17 | 郭志敏, 蒋君侠, 柯映林. 基于POGO柱三点支撑的飞机大部件调姿方法[J]. 航空学报, 2009, 30(7): 1319-1324. |
GUO Z M, JIANG J X, KE Y L. Posture alignment for large aircraft parts based on three POGO sticks distributed support[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7): 1319-1324 (in Chinese). | |
18 | 黄翔, 李泷杲, 陈磊, 等. 民用飞机大部件数字化对接关键技术[J]. 航空制造技术, 2010, 53(3): 54-56. |
HUANG X, LI S G, CHEN L, et al. Key technologies of digital final assembly for civil aircraft[J]. Aeronautical Manufacturing Technology, 2010, 53(3): 54-56 (in Chinese). | |
19 | 陈文亮, 潘国威, 王珉. 基于力位协同控制的大飞机机身壁板装配调姿方法[J]. 航空学报, 2019, 40(2): 522403. |
CHEN W L, PAN G W, WANG M. High precision positioning method for aircraft fuselage panel based on force/position control[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522403 (in Chinese). | |
20 | JONSSON M, OSSBAHR G. Aspects of reconfigurable and flexible fixtures[J]. Production Engineering, 2010, 4(4): 333-339. |
21 | RAMIREZ J, WOLLNACK J. Flexible automated assembly systems for large CFRP-structures [J]. Procedia Technology, 2014, 15: 447-455. |
22 | REID E. Development of a mobile drilling and fastening system based on a PKM robotic platform[C]∥SAE Technical Paper Series. 400 Commonwealth Drive, 2015: 2059-2070. |
23 | BERTELSMEIER F, DETERT T, UBELHOR T, et al. Cooperating robot force control for positioning and untwisting of thin walled components[J]. Advances in Robotics & Automation, 2017, 6(3): 1000179. |
24 | QU L Q, PAN G W, CHEN W L. Reasonable drive selecting of parallel mechanisms based on screw theory[J]. World Journal of Engineering and Technology, 2015, 3(3): 259-265. |
25 | 王伟, 张春亮, 白新宇, 等. 基于并联构型的飞机装配调姿定位机构精度研究[J]. 航空制造技术, 2017, 60(S1): 60-64. |
WANG W, ZHANG C L, BAI X Y, et al. Positioning accuracy research of assembly tooling for aircraft based on parallel mechanism[J]. Aeronautical Manufacturing Technology, 2017, 60(Sup 1): 60-64 (in Chinese). | |
26 | 文科, 杜福洲, 张铁军, 等. 舱段类部件数字化柔性对接系统设计与试验研究[J]. 航空制造技术, 2017, 60(11): 24-31. |
WEN K, DU F Z, ZHANG T J, et al. Research on design and experiment for digital flexible aligning system of cabin components[J]. Aeronautical Manufacturing Technology, 2017, 60(11): 24-31 (in Chinese). | |
27 | ZHAO D, BI Y B, KE Y L. Kinematic modeling and base frame calibration of a dual-machine-based drilling and riveting system for aircraft panel assembly[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(5): 1873-1884. |
28 | BORRMANN C, WOLLNACK J. Enhanced calibration of robot tool centre point using analytical algorithm[J]. International Journal of Materials Science and Engineering, 2015, 3(1): 12-18. |
/
〈 |
|
〉 |