固体力学与飞行器总体设计

大型运输类飞机典型机身框段坠撞特性分析

  • 牟浩蕾 ,
  • 解江 ,
  • 冯振宇 ,
  • 程坤 ,
  • 刘义
展开
  • 1.中国民航大学 安全科学与工程学院,天津  300300
    2.中国民航大学 科技创新研究院,天津  300300
.E-mail: mhfzy@163.com

收稿日期: 2022-05-24

  修回日期: 2022-07-14

  录用日期: 2022-11-07

  网络出版日期: 2022-12-06

基金资助

天津市应用基础研究多元投入(21JCYBJC00690)

Crashworthiness characteristics analysis of typical fuselage section of large transport aircraft

  • Haolei MOU ,
  • Jiang XIE ,
  • Zhenyu FENG ,
  • Kun CHENG ,
  • Yi LIU
Expand
  • 1.College of Safety Science and Engineering,Civil Aviation University of China,Tianjin  300300,China
    2.Science and Technology Innovation Research Institute,Civil Aviation University of China,Tianjin  300300,China
E-mail: mhfzy@163.com

Received date: 2022-05-24

  Revised date: 2022-07-14

  Accepted date: 2022-11-07

  Online published: 2022-12-06

Supported by

Tianjin Applied Basic Research Multi input Fund Project(21JCYBJC00690)

摘要

为了研究大型运输类飞机坠撞特性及失效模式,发展机身框段结构有限元建模及坠撞仿真技术,首先设计加工三框两段全尺寸机身框段试验件(含2套三联座椅和4个FAA混III假人);其次通过开展坠撞试验获得其坠撞变形及响应特性;最后建立经试验验证的机身框段有限元模型,并进一步评估其撞击不同地面(混凝土地面和软土地面)时的响应特性。结果表明,在6.02 m/s坠撞速度下,客舱地板上部区域基本保持完整,客舱地板下部区域发生了较大变形与破坏,产生3处塑性铰;货舱地板横梁一侧在其与机身框连接处发生断裂,导致同侧的客舱地板峰值加速度明显大于另一侧,最大峰值加速度和撞击力分别为427.7 m/s2和290.8 kN。有限元模型能够准确模拟客舱地板下部的3处塑性铰、货舱地板横梁与机身框连接处的失效情况等,且在速度、加速度等方面与试验结果吻合较好,仿真结果表明机身框是主要的吸能部件,占总吸能量的40.7%;当机身框段撞击不同地面时,由于软土地面发生变形并吸收了部分冲击能量,导致机身变形模式发生改变,并降低了传递给乘员的峰值加速度。

本文引用格式

牟浩蕾 , 解江 , 冯振宇 , 程坤 , 刘义 . 大型运输类飞机典型机身框段坠撞特性分析[J]. 航空学报, 2023 , 44(9) : 227512 -227512 . DOI: 10.7527/S1000-6893.2022.27512

Abstract

To study the crashworthiness characteristics and failure mode of large transport aircraft and develop the finite element modeling and crashworthiness simulation technology of fuselage structures, a three-frame and two-span full-scale fuselage section with two sets of triple seats installed and four FAA Hybrid III Anthropomorphic Test Devices (ATD) placed is firstly designed and manufactured; the crash deformation and response characteristics are then obtained by carrying out a drop test of the typical fuselage section; Finally, a finite element model of fuselage section is established and verified by the drop test results, and the crashworthiness characteristics are evaluated when hitting different grounds (concrete ground and soft grounds). The results show that at the vertical impact velocity of 6.02 m/s, the upper area of the cabin floor remains basically intact, and the sub-cabin structures are significantly deformed and damaged, resulting in three plastic hinges; the cargo floor beam breaks on one side where it joins the fuselage frame, resulting in a significantly faster peak acceleration of the cabin floor on the same side than on the other side, and the maximum acceleration peak value and impact force are 427.7 m/s2 and 290.8 kN, respectively. The finite element model can accurately simulate the three plastic hinges and the failure of the connection between the cargo floor beam and the fuselage frame, and it is in good agreement with the test results in terms of impact velocity and acceleration. The fuselage frame is the main energy-absorbing component, accounting for 40.7% of the total absorbed energy; when hitting different grounds, the partial impact energy is absorbed by the soft ground, resulting in slightly different failure modes of the fuselage section and a reduction in the peak acceleration transmitted to the occupants.

参考文献

1 GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety[J]. Progress in Aerospace Sciences201898: 106-123.
2 牟浩蕾, 解江, 冯振宇. 民机机身结构适坠性研究[J]. 交通运输工程学报202020(3): 17-39.
  MOU H L, XIE J, FENG Z Y. Research on crashworthiness of civil aircraft fuselage structures[J]. Journal of Traffic and Transportation Engineering202020(3): 17-39 (in Chinese).
3 MOU H L, XIE J, FENG Z Y. Research status and future development of crashworthiness of civil aircraft fuselage structures: An overview[J]. Progress in Aerospace Sciences2020119: 100644.
4 WILLIAMS M S, HAYDUK R J. Vertical drop test of a transport fuselage section located forward of the wing[R]. Washington D. C. : NASA, 1983.
5 FASANELLA E L, ALFARO-BOU E. Vertical drop test of a transport fuselage section located aft of the wing[R]. Washington D. C. : NASA, 1986.
6 ABRAMOWITZ A, SMITH T G, VU T. Vertical drop test of a narrow-body transport fuselage section with a conformable auxiliary fuel tank onboard [R]. Washington D. C. : FAA, 2000.
7 JACKSON K, LITTELL J, ANNETT M, et al. Finite element simulations of two vertical drop tests of F-28 fuselage sections[R]. Washington D. C. : NASA, 2018.
8 LITTELL J. A summary of results from two full-scale Fokker F28 fuselage section drop tests[R]. Washington, D. C. : NASA, 2018.
9 RASSAIAN M. Virtual test & simulation [C]∥ AIAA Complex Aerospace Systems Exchange. Reston: AIAA, 2013.
10 OLIVARES G. Crashworthiness certification by analysis [C]∥JAMS 2018 Technical Review Meeting. Washington D. C. : JAMS, 2018.
11 HASHEMI S M R, WALTON A C. A systematic approach to aircraft crashworthiness and impact surface material models[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2000214(5): 265-280.
12 RICCIO A, SAPUTO S, SELLITTO A, et al. An insight on the crashworthiness behavior of a full-scale composite fuselage section at different impact angles[J]. Aerospace20196(6): 72.
13 DI PALMA L, DI CAPRIO F, CHIARIELLO A, et al. Vertical drop test of composite fuselage section of a regional aircraft[J]. AIAA Journal201958(1): 474-487.
14 KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Summary of vertical drop tests of YS-11 transport fuselage sections[R]. New York: SAE International, 2003.
15 刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估[J]. 航空学报201334(9): 2130-2140.
  LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors[J]. Acta Aeronautica et Astronautica Sinica201334(9): 2130-2140 (in Chinese).
16 LIU X C, GUO J, BAI C Y, et al. Drop test and crash simulation of a civil airplane fuselage section[J]. Chinese Journal of Aeronautics201528(2): 447-456.
17 刘小川, 白春玉, 惠旭龙, 等. 民机机身结构耐撞性研究的进展与挑战[J]. 固体力学学报202041(4): 293-323.
  LIU X C, BAI C Y, XI X L, et al. Progress and challenge of research on crashworthiness of civil airplane fuselage structures[J]. Chinese Journal of Solid Mechanics202041(4): 293-323 (in Chinese).
18 张欣玥, 惠旭龙, 刘小川, 等. 典型金属民机机身结构坠撞特性试验研究[J]. 航空学报202243(6): 526234.
  ZHANG X Y, XI X L, LIU X C, et al. Experimental study on crash characteristics of typical metal civil aircraft fuselage structure[J]. Acta Aeronautica et Astronautica Sinica202243(6): 526234 (in Chinese).
19 ABRAMOWITZ A, SMITH T G, VU T, et al. Vertical drop test of an ATR42-300 airplane [R]. Washington D. C. : FAA, 2006.
20 PAZ MENDEZ J, DíAZ GARCIA J, ROMERA RODRIGUEZ L E, et al. Crashworthiness study on hybrid energy absorbers as vertical struts in civil aircraft fuselage designs[J]. International Journal of Crashworthiness202025(4): 430-446.
21 RICCIO A, SAPUTO S, SELLITTO A, et al. A numerical assessment on the influences of material toughness on the crashworthiness of a composite fuselage barrel[J]. Applied Sciences202010(6): 2019.
22 REN Y R, XIANG J W, ZHENG J Q, et al. Crashworthiness analysis of aircraft fuselage with sine-wave beam structure[J]. Chinese Journal of Aeronautics201629(2): 403-410.
23 任毅如, 向锦武, 罗漳平, 等. 客舱地板斜撑杆对民机典型机身段耐撞性能的影响[J]. 航空学报201031(2): 271-276.
  REN Y R, XIANG J W, LUO Z P, et al. Effect of cabin-floor oblique strut on crashworthiness of typical civil aircraft fuselage section[J]. Acta Aeronautica et Astronautica Sinica201031(2): 271-276 (in Chinese).
24 MOU H L, ZOU T C, FENG Z Y, et al. Crashworthiness analysis and evaluation of fuselage section with sub-floor composite sinusoidal specimens[J]. Latin American Journal of Solids and Structures201613(6): 1186-1202.
25 THOMAS M A, CHITTY D, GILDEA M L, et al. Constitutive soil properties for cuddeback lake, California and Carson sink, Nevada[R]. Washington D. C. : NASA, 2008.
26 THOMAS M A, CHITTY D. Constitutive soil properties for mason sand and kennedy space center[R]. Washington D. C. : NASA, 2011.
27 DING M L, BINIENDA W K. Numerical approach to a reverse problem using LS-DYNA3D analysis: Collision of an aeroplane door with the ground[J]. International Journal of Crashworthiness202025(2): 147-163.
28 EVANS W, JONSON D, WALKER M. An Eulerian approach to soil impact analysis for crashworthiness applications[J]. International Journal of Impact Engineering201691: 14-24.
29 冯振宇, 李恒晖, 刘义, 等. 中低应变率下7075-T7351铝合金本构与失效模型对比[J]. 材料导报202034(12): 12088-12093.
  FENG Z Y, LI H H, LIU Y, et al. Comparison of constitutive and failure models of 7075-T7351 alloy at intermediate and low strain rates[J]. Materials Reports202034(12): 12088-12093 (in Chinese).
30 冯振宇, 解江, 李恒晖, 等. 大飞机货舱地板下部结构有限元建模与适坠性分析[J]. 航空学报201940(2): 522394.
  FENG Z Y, XIE J, LI H H, et al. Finite element modeling and crashworthiness analysis of large aeroplane sub-cargo structure[J]. Acta Aeronautica et Astronautica Sinica201940(2): 522394 (in Chinese).
31 冯振宇, 程坤, 赵一帆, 等. 运输类飞机典型货舱地板下部结构冲击吸能特性[J]. 航空学报201940(9): 222907.
  FENG Z Y, CHENG K, ZHAO Y F, et al. Energy-absorbing characteristics of a typical sub-cargo fuselage section of a transport category aircraft[J]. Acta Aeronautica et Astronautica Sinica201940(9): 222907 (in Chinese).
32 MOU H L, XIE J, LIU Y, et al. Impact test and numerical simulation of typical sub-cargo fuselage section of civil aircraft[J]. Aerospace Science and Technology2020107: 106305.
33 解江, 牟浩蕾, 冯振宇, 等. 大飞机典型货舱下部结构冲击试验及数值模拟[J]. 航空学报202243(6): 525890.
  XIE J, MOU H L, FENG Z Y, et al. Impact characteristics of typical sub-cargo structure of large aircraft: Tests and numerical simulation[J]. Acta Aeronautica et Astronautica Sinica202243(6): 525890 (in Chinese).
34 EIBAND A. Human tolerance to rapidly applied accelerations: A summary of the literature[R]. Washington D. C. : NASA, 1959.
文章导航

/