铝合金-胶膜压印/粘接复合连接工艺及接头失效分析
收稿日期: 2022-09-21
修回日期: 2022-11-03
录用日期: 2022-11-28
网络出版日期: 2022-11-29
基金资助
国家自然科学基金(51565022)
Aluminum alloy clinch-bonding with hot melt adhesive film and joint failure analysis
Received date: 2022-09-21
Revised date: 2022-11-03
Accepted date: 2022-11-28
Online published: 2022-11-29
Supported by
National Natural Science Foundation of China(51565022)
以热熔胶膜作为粘接剂,开展压印/粘接复合连接工艺试验研究,基于Box-Behnken设计(BBD)方法,建立因素(冲压力、胶膜厚度、板材硬度)与响应值(能量吸收值、失效载荷)之间的多元回归方程,辨析因素与响应值之间的内在联系,结合接头机械内锁结构的有限元模型,分析接头断裂失效模式。结果表明:多元回归模型具备较高的显著性且拟合程度高,能量吸收值、失效载荷的试验值与预测值的最大误差分别为7.9%、11.42%,验证了模型的可靠性。冲压力与能量吸收值和失效载荷均呈正相关性,胶膜厚度对能量吸收值和失效载荷的影响均呈先减小后增大的趋势;胶膜的加入对接头的力学性能有较明显的提升;当接头受拉时,接头发生以拉脱失效和混合失效(拉脱和颈部断裂同时发生)为主的失效模式,有限元分析与试验吻合较好。
陈江波 , 曾凯 , 邢保英 , 张洪申 , 丁燕芳 , 何晓聪 . 铝合金-胶膜压印/粘接复合连接工艺及接头失效分析[J]. 航空学报, 2023 , 44(14) : 428029 -428029 . DOI: 10.7527/S1000-6893.2022.28029
Hot melt adhesive film was used as adhesive to carry out the experimental research on the composite bonding process of clinch-bonding. Based on Box-Behnken Design (BBD) method, the multiple regression equation between factors (punch pressure, film thickness, sheet hardness) and response values (energy absorption value, failure load) was established, and the internal relationship between factors and response values was analyzed. Combined with the finite element model of mechanical internal locking structure of joint, the fracture failure mode of joint was investigated. The results show that the multiple regression model has high significance and high fitting degree, and the maximum error of energy absorption value and failure load between the experimental value and the predicted value is 7.9% and 11.42%, which verifies the reliability of the model. The punch pressure is positively correlated with energy absorption value and failure load, and the influence of film thickness on energy absorption value and failure load decreases first and then increases. The mechanical properties of the joint are obviously improved by adding film. When the joint is under tension, the failure mode is mainly pull-off failure and mixed failure (pull-off and neck fracture occur simultaneously), and the finite element analysis is in good agreement with the test.
1 | 曹增强, 代瑛. 楔形复合材料结构电磁铆接工艺[J]. 航空学报, 2009, 30(10): 1998-2002. |
CAO Z Q, DAI Y. Electromagnetic riveting technology in cuneal composite structures[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1998-2002 (in Chinese). | |
2 | LEI L, HE X C, YU T X, et al. Failure modes of mechanical clinching in metal sheet materials[J]. Thin-Walled Structures, 2019, 144: 106281. |
3 | 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8): 2773-2797. |
GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2773-2797 (in Chinese). | |
4 | HE X C. Clinching for sheet materials[J]. Science and Technology of Advanced Materials, 2017, 18(1): 381-405. |
5 | HE X C, ZHAO L, YANG H Y, et al. Investigations of strength and energy absorption of clinched joints[J]. Computational Materials Science, 2014, 94: 58-65. |
6 | BANEA M D, ROSIOARA M, CARBAS R J C, et al. Multi-material adhesive joints for automotive industry[J]. Composites Part B: Engineering, 2018, 151: 71-77. |
7 | REN B Y, LISSENDEN C J. Modal content-based damage indicators for disbonds in adhesively bonded composite structures[J]. Structural Health Monitoring, 2016, 15(5): 491-504. |
8 | CHEN C, ZHAO S D, HAN X L, et al. Experimental investigation of the mechanical reshaping process for joining aluminum alloy sheets with different thicknesses[J]. Journal of Manufacturing Processes, 2017, 26: 105-112. |
9 | MORONI F, PIRONDI A, KLEINER F. Experimental analysis and comparison of the strength of simple and hybrid structural joints[J]. International Journal of Adhesion and Adhesives, 2010, 30(5): 367-379. |
10 | BALAWENDER T, SADOWSKI T, GOLEWSKI P. Numerical analysis and experiments of the clinch-bonded joint subjected to uniaxial tension[J]. Computational Materials Science, 2012, 64: 270-272. |
11 | GERSTMANN T, AWISZUS B. Hybrid joining: Numerical process development of flat-clinch-bonding[J]. Journal of Materials Processing Technology, 2020, 277: 116421. |
12 | ZHUANG W M, SHI H D, LI M. Curing effects on forming and mechanical performance of clinch-adhesive joints of dissimilar materials between AA5754 aluminum alloy and Q235 steel[J]. The Journal of Adhesion, 2023, 99(1): 1-33. |
13 | 邢保英, 何晓聪, 冯模盛, 等. 粘接剂对压印连接强度的影响及数理统计分析[J]. 材料导报, 2012, 26(2): 56-59. |
XING B Y, HE X C, FENG M S, et al. Analysis on influence of adhesive on strength of clinched joints with mathematical statistics[J]. Materials Review, 2012, 26(2): 56-59 (in Chinese). | |
14 | 初明明, 何晓聪, 雷蕾, 等. 泡沫金属夹层对压印-粘接复合接头力学性能的影响[J]. 塑性工程学报, 2018, 25(3): 242-247. |
CHU M M, HE X C, LEI L, et al. Effect of foam metal sandwich on mechanical properties of clinch-bonded hybrid joint[J]. Journal of Plasticity Engineering, 2018, 25(3): 242-247 (in Chinese). | |
15 | 雷蕾, 何晓聪, 高爱凤, 等. 粘接剂对1420铝锂合金压印接头疲劳性能的影响[J]. 材料导报, 2018, 32(16): 2809-2815. |
LEI L, HE X C, GAO A F, et al. Influence of adhesive on fatigue property of 1420 aluminum-lithium alloy clinched joint[J]. Materials Review, 2018, 32(16): 2809-2815 (in Chinese). | |
16 | ADAMS R D, COPPENDALE J, MALLICK V, et al. The effect of temperature on the strength of adhesive joints[J]. International Journal of Adhesion and Adhesives, 1992, 12(3): 185-190. |
17 | BANEA M D, SILVA L F M DA. The effect of temperature on the mechanical properties of adhesives for the automotive industry[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 2010, 224(2): 51-62. |
18 | RAMALHO L D C, SáNCHEZ-ARCE I J, GONCALVES D C, et al. Numerical analysis of the dynamic behaviour of adhesive joints: A review[J]. International Journal of Adhesion and Adhesives, 2022: 103219. |
19 | TUNCER G, MANSOURI D, ?ENDUR P. The effect of spotwelds and structural adhesives on static and dynamic characteristics of vehicle body design[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021; 235(12): 3207-3219. |
20 | PENG X S, LIU S, HUANG Y D, et al. Investigation of joining of continuous glass fibre reinforced polypropylene laminates via fusion bonding and hotmelt adhesive film[J]. International Journal of Adhesion and Adhesives, 2020, 100: 102615. |
21 | 曾凯, 孙晓婷, 邢保英, 等. DP780高强钢胶接点焊的工艺优化及断裂特征分析[J]. 焊接学报, 2020, 41(4): 77-83, 101. |
ZENG K, SUN X T, XING B Y, et al. Process optimization and fracture characteristic analysis of DP780 high strength steel weld-bonding[J]. Transactions of the China Welding Institution, 2020, 41(4): 77-83, 101 (in Chinese). | |
22 | 姜春阳, 吴利辉, 常云龙, 等. 铝合金与树脂基复合材料的铆接/搅拌摩擦搭接复合焊接[J]. 航空学报, 2022, 43(2): 625190. |
JIANG C Y, WU L H, CHANG Y L, et al. Hybrid welding of riveting/friction stir lap joining of aluminum alloy to resin-based composite[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 625190 (in Chinese). | |
23 | 陈吉清, 邱泽鑫, 周云郊, 等. 钢铝板材压-胶复合连接性能[J]. 哈尔滨工业大学学报, 2016, 48(7): 169-175. |
CHEN J Q, QIU Z X, ZHOU Y J, et al. Performances of clinch-bonded hybrid joints between steel-aluminum sheets[J]. Journal of Harbin Institute of Technology, 2016, 48(7): 169-175 (in Chinese). | |
24 | 钟毅, 林健, 雷永平, 等. 自冲铆接接头拉剪强度的数值模拟研究[J]. 材料工程, 2011, 39(11): 18-22. |
ZHONG Y, LIN J, LEI Y P, et al. Numerical simulation of lap-shear strength of self-piercing riveting joint[J]. Journal of Materials Engineering, 2011, 39(11): 18-22 (in Chinese). | |
25 | ETEMADI S, HAHN O, ROLL K. Simulation of hybrid joining technologies using the example of clinch-bonding[J]. Key Engineering Materials, 2012, 504-506: 777-782. |
/
〈 |
|
〉 |