壁面矩形微尺度结构对高速稀薄剪切流的影响
收稿日期: 2022-08-30
修回日期: 2022-10-11
录用日期: 2022-11-11
网络出版日期: 2022-11-29
基金资助
国家自然科学基金(92152103);天津市自然科学基金(20JCQNJC01240)
Effects of rectangular micro-scale structures on hypersonic rarefied shear flow
Received date: 2022-08-30
Revised date: 2022-10-11
Accepted date: 2022-11-11
Online published: 2022-11-29
Supported by
National Natural Science Foundation of China(92152103);Natural Science Foundation of Tianjin(20JCQNJC01240)
高超声速飞行器表面往往存在复杂的粗糙结构,其尺度与临近空间飞行器来流分子平均自由程大约在同一量级,此时壁面微尺度结构将显著影响近壁区流动特征以及壁面气动力/热。将壁面粗糙结构简化为周期分布的矩形粗糙元,采用直接模拟Monte Carlo (DSMC)方法研究了壁面粗糙元高度、壁面适应系数对高速稀薄剪切流流场特性及壁面气动特性的影响。结果表明:相比于光滑壁面,粗糙壁近壁区气体速度减小、温度降低,壁面总阻力、热载荷增加。壁面粗糙结构增强了气体分子和壁面间的动量、能量交换,这种增强效应随着粗糙元高度的增加而增加,当粗糙元高度增加到分子平均自由程时,整个凹腔内形成旋涡结构,此后粗糙元高度的影响不再明显。此外,壁面适应系数和壁面粗糙结构对近壁区流动存在耦合效应,壁面适应系数越小,粗糙结构对气固间动量、能量交换的促进作用越明显。
刘艳婷 , 欧吉辉 , 韩宇峰 , 陈杰 . 壁面矩形微尺度结构对高速稀薄剪切流的影响[J]. 航空学报, 2023 , 44(16) : 127956 -127956 . DOI: 10.7527/S1000-6893.2022.27956
Complex micro-scale roughness structures usually exist on the surface of hypersonic vehicles. With their scale of roughness almost in the same order as the mean free path of gas molecules for vehicles in near space, these microstructures will significantly affect the flow characteristics in the near surface region and surface aerodynamics. In this paper, a high-speed shear flow between a smooth wall and a rough wall, where the microstructures are simplified as periodically distributed rectangular elements, is simulated using the Direct Simulation Monte Carlo (DSMC) method. The effects of roughness element heights and surface accommodation coefficients are investigated. The results show that the microstructures enhance the momentum and energy exchanges between gas and surface. Compared with a smooth surface, the gas velocity and temperature near the rough surface decrease while the total drag and heat load increase. As the element height increases, the effects of roughness become stronger. When the roughness height is larger than one mean free path, a vortex between roughness elements is fully formed and the effect is no longer sensitive to the element height. The microstructures and surface accommodation coefficients have a coupling effect on the momentum and energy exchange. Smaller accommodation coefficients lead to stronger enhanced effect induced by roughness.
1 | 叶友达, 张涵信, 蒋勤学, 等. 近空间高超声速飞行器气动特性研究的若干关键问题[J]. 力学学报, 2018, 50(6): 1292-1310. |
YE Y D, ZHANG H X, JIANG Q X, et al. Some key problems in the study of aerodynamic characteristics of near-space hypersonic vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1292-1310 (in Chinese). | |
2 | OU J H, CHEN J. Nonlinear transport of rarefied Couette flows from low speed to high speed[J]. Physics of Fluids, 2020, 32(11): 112021. |
3 | MAXWELL J C. On stresses in rarified gases arising from inequalities of temperature[J]. Philosophical Transactions of the Royal Society of London, 1879, 170: 231-256. |
4 | BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford: Clarendon Press, 1994: 19-26. |
5 | XU K, HUANG J C. A unified gas-kinetic scheme for continuum and rarefied flows[J]. Journal of Computational Physics, 2010, 229(20): 7747-7764. |
6 | LIANG T F, LI Q, YE W J. A physical-based gas?surface interaction model for rarefied gas flow simulation[J]. Journal of Computational Physics, 2018, 352: 105-122. |
7 | 秦启宗, 杨永炎, 章壮健, 等. 用于气-固表面反应研究的多功能分子束实验装置[J]. 化学物理学报, 1992(5): 355-362. |
QIN Q Z, YANG Y Y, ZHANG Z J, et al. A versatile molecular beam apparatus for dyanmics studies on gas-surface reactions[J]. Chinese Journal of Chemical Physics, 1992(5): 355-362 (in Chinese). | |
8 | 张烨, 张冉, 赖剑奇, 等. 宏观速度对适应系数的影响规律研究[J]. 物理学报, 2019, 68(22): 224702. |
ZHANG Y, ZHANG R, LAI J Q, et al. Effect of macroscopic velocity on accommodation coefficients based on the molecular dynamics method[J]. Acta Physica Sinica, 2019, 68(22): 224702 (in Chinese). | |
9 | 沈青. 稀薄气体动力学[M]. 北京: 国防工业出版社, 2003: 122. |
SHEN Q. Rarefied gas dynamics[M]. Beijing: National Defense Industry Press, 2003: 122 (in Chinese). | |
10 | LORD R G. Some extensions to the Cercignani-Lampis gas-surface scattering kernel[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(4): 706-710. |
11 | 解维华, 韩国凯, 孟松鹤, 等. 返回舱/空间探测器热防护结构发展现状与趋势[J]. 航空学报, 2019, 40(8): 1-17. |
XIE W H, HAN G K, MENG S H, et al. Development status and trend of thermal protection structure for return capsules and space probes[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 1-17 (in Chinese). | |
12 | 谢丹, 冀春秀, 景兴建. 高超声速典型弹道下的壁板热气动弹性动力学分析[J]. 航空学报, 2021, 42(11): 368-383. |
XIE D, JI C X, JING X J. Dynamics analysis of panel aerothermoelasticity in typical hypersonic trajectories[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 368-383 (in Chinese). | |
13 | 赵瑾, 孙向春, 张俊, 等. 热防护材料气固界面传热传质问题研究进展[J]. 航空学报, 2022, 43(10): 81-101. |
ZHAO J, SUN X C, ZHANG J, et al. Research advances on heat and mass transfer coupling effect at gas-solid interface for thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 81-101 (in Chinese). | |
14 | 李玉川, 王智慧. 高超声速来流中平板粗糙壁的热流研究[C]∥ 第九届全国流体力学学术会议论文摘要集. 北京: 中国力学学会, 2016: 209. |
LI Y C, WANG Z H. Study of heat flux on rough-wall in the hypersonic flow[C]∥ 9th National Conference on Fluid Mechanics. Beijing: Chinese Society of Theoretical and Applied Mechanics, 2016: 209 (in Chinese). | |
15 | 王俊. 高超声速飞行器气动热烧蚀预测与控制研究[D]. 广州: 华南理工大学, 2013 : 5-7. |
WANG J. Study on prediction and control of aerodynamic thermal ablation of hypersonic vehicle[D]. Guangzhou: South China University of Technology, 2013: 5-7 (in Chinese). | |
16 | DUFFA G, VIGNOLES G L, GOYHéNèCHE J M, et al. Ablation of carbon-based materials: investigation of roughness set-up from heterogeneous reactions[J]. International Journal of Heat and Mass Transfer, 2005, 48(16): 3387-3401. |
17 | CHARWAT A F, ROOS J N, DEWEY F C JR, et al. An investigation of separated flows—Part I: The pressure field[J]. Journal of the Aerospace Sciences, 1961, 28(6): 457-470. |
18 | CHARWAT A F, DEWEY C F JR, ROOS J N, et al. An investigation of separated flows—Part II: Flow in the cavity and heat transfer[J]. Journal of the Aerospace Sciences, 1961, 28(7): 513-527. |
19 | 邱波, 张昊元, 国义军, 等. 高超声速飞行器表面横缝旋涡结构及气动热环境数值模拟[J]. 航空学报, 2015, 36(11): 3515-3521. |
QIU B, ZHANG H Y, GUO Y J, et al. Numerical investigation for vortexes and aerodynamic heating environment on transverse gap on hypersonic vehicle surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11): 3515-3521 (in Chinese). | |
20 | 邱波, 国义军, 张昊元, 等. 来流参数对防热瓦横缝旋涡结构及热环境的影响[J]. 航空学报, 2016, 37(3): 761-770. |
QIU B, GUO Y J, ZHANG H Y, et al. Free stream parameters' effects on vortexes and aerodynamic heating environment in thermal protection tile transverse gaps[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 761-770 (in Chinese). | |
21 | SMITH D M, PETLEY D H, EDWARDS C L W, et al. An investigation of gap heating due to stepped tiles in zero pressure gradient regions of the Shuttle Orbiter Thermal Protection System[C]∥ 21st Aerospace Sciences Meeting. Reston: AIAA, 1983. |
22 | NESTLER D E, SAYDAH A R, AUXER W L. Heat transfer to steps and cavities in hypersonic turbulent flow[J]. AIAA Journal, 1969, 7(7): 1368-1370. |
23 | 唐贵明. 平板-控制翼缝隙热流分布的激波风洞实验[J]. 空气动力学学报, 1985(2): 88-92. |
TANG G M. Experimental investigation of heat transfer distribution inside the gap of a flat plate-flap combination in a shock tunnel[J]. Acta Aerodynamica Sinica, 1985(2): 88-92 (in Chinese). | |
24 | SANTOS W, PALHARINI R. Length-to-depth ratio effects on flowfield structure of low-density hypersonic cavity flow[C]∥ 42nd AIAA Thermophysics Conference. Reston: AIAA, 2011. |
25 | PALHARINI R C, SCANLON T J, REESE J M. Aerothermodynamic comparison of two-and three-dimensional rarefied hypersonic cavity flows[J]. Journal of Spacecraft and Rockets, 2014, 51(5): 1619-1630. |
26 | 靳旭红, 黄飞, 程晓丽, 等. 稀薄流区高超声速飞行器表面缝隙流动结构及气动热环境的分子模拟[J]. 航空动力学报, 2019, 34(1): 201-209. |
JIN X H, HUANG F, CHENG X L, et al. Molecular simulation of surface gap flow structure and aerodynamic thermal environment of hypersonic vehicle in rarefied flow region[J]. Journal of Aerospace Power, 2019, 34(1): 201-209 (in Chinese). | |
27 | 靳旭红, 黄飞, 程晓丽, 等. Maxwell气固相互作用模型对稀薄高超声速凹腔绕流流动特征和热环境的影响[J]. 航空学报, 2021, 42(3): 162-172. |
JIN X H, HUANG F, CHENG X L, et al. Influence of Maxwell gas-solid interaction model on flow characteristics and thermal environment around thin hypersonic cavity[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 162-172 (in Chinese). | |
28 | JIN X H, HUANG F, MIAO W B, et al. Effects of the boundary-layer thickness at the cavity entrance on rarefied hypersonic flows over a rectangular cavity[J]. Physics of Fluids, 2021, 33(3): 036116. |
29 | 张隽研, 王学德. 临近空间高超声速空腔几何特性的DSMC研究[J]. 弹道学报, 2020, 32(1): 47-54. |
ZHANG J Y, WANG X D. DSMC study on geometric characteristics of hypersonic cavity in adjacent space[J]. Journal of Ballistics, 2020, 32(1): 47-54 (in Chinese). | |
30 | 黄勇, 钱丰学, 于昆龙, 等. 基于柱状粗糙元的边界层人工转捩试验研究[J]. 实验流体力学, 2006, 20(3): 59-62. |
HUANG Y, QIAN F X, YU K L, et al. Experimental investigation on boundary-layer artificial transition based on transition trip disk[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(3): 59-62 (in Chinese). | |
31 | 云和明, 陈宝明, 程林. 粗糙平板微通道流动和传热的数值模拟[J]. 工程热物理学报, 2009, 30(11): 1939-1941. |
YUN H M, CHEN B M, CHENG L. The numerical simulation of flow and heat transfer in rough flat micro-channels[J]. Journal of Engineering Thermophysics, 2009, 30(11): 1939-1941 (in Chinese). | |
32 | YAN H, ZHANG W M, PENG Z K, et al. Effect of random surface topography on the gaseous flow in microtubes with an extended slip model[J]. Microfluidics and Nanofluidics, 2015, 18(5): 897-910. |
33 | CAO B Y, CHEN M, GUO Z Y. Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation[J]. International Journal of Engineering Science, 2006, 44(13-14): 927-937. |
34 | ROVENSKAYA O, CROCE G. Numerical investigation of microflow over rough surfaces: Coupling approach[J]. Journal of Heat Transfer, 2013, 135(10): 101005. |
35 | ROVENSKAYA O. Kinetic analysis of surface roughness in a microchannel[J]. Computers & Fluids, 2013, 77: 159-165. |
36 | ZHANG C B, DENG Z L, CHEN Y P. Temperature jump at rough gas–solid interface in Couette flow with a rough surface described by Cantor fractal[J]. International Journal of Heat and Mass Transfer, 2014, 70: 322-329. |
37 | KAMMARA K K, KUMAR R, SINGH A K, et al. Systematic direct simulation Monte Carlo approach to characterize the effects of surface roughness on accommodation coefficients[J]. Physical Review Fluids, 2019, 4(12): 123401. |
38 | MO G, ROSENBERGER F. Molecular-dynamics simulation of flow in a two-dimensional channel with atomically rough walls[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1990, 42(8): 4688-4692. |
39 | DAY B S, SHULER S F, DUCRE A, et al. The dynamics of gas-surface energy exchange in collisions of Ar atoms with ω-functionalized self-assembled monolayers[J]. The Journal of Chemical Physics, 2003, 119(15): 8084-8096. |
40 | SUN J, LI Z X. Effect of gas adsorption on momentum accommodation coefficients in microgas flows using molecular dynamic simulations[J]. Molecular Physics, 2008, 106(19): 2325-2332. |
41 | SUN J, LI Z X. Three-dimensional molecular dynamic study on accommodation coefficients in rough nanochannels[J]. Heat Transfer Engineering, 2011, 32(7-8): 658-666. |
42 | WAGNER W. A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation[J]. Journal of Statistical Physics, 1992, 66(3): 1011-1044. |
43 | PLIMPTON S J, MOORE S G, BORNER A, et al. Direct simulation Monte Carlo on petaflop supercomputers and beyond[J]. Physics of Fluids, 2019, 31(8): 086101. |
44 | MEHTA N A, LEVIN D A. Molecular-dynamics-derived gas-surface models for use in direct-simulation Monte Carlo[J]. Journal of Thermophysics and Heat Transfer, 2017, 31(4): 757-771. |
/
〈 |
|
〉 |