航空发动机非定常流固热声耦合专栏

基于磁共振测速的复合冷却涡轮叶片流动分析

  • 赖佑奎 ,
  • 马海腾 ,
  • 刘一粟 ,
  • 欧阳华
展开
  • 1.上海交通大学 中英国际低碳学院,上海 200240
    2.上海交通大学 机械与动力工程学院,上海 200240
.E-mail: oyh@sjtu.edu.cn

收稿日期: 2022-08-12

  修回日期: 2022-09-13

  录用日期: 2022-11-01

  网络出版日期: 2022-11-17

基金资助

国家科技重大专项(2017-II-0007-0021)

Flow measurement and analysis of a turbine blade with multiple cooling structures based on magnetic resonance velocimetry

  • Youkui LAI ,
  • Haiteng MA ,
  • Yisu LIU ,
  • Hua OUYANG
Expand
  • 1.China-UK Low Carbon College,Shanghai Jiao Tong University,Shanghai 200240,China
    2.School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China
E-mail: oyh@sjtu.edu.cn

Received date: 2022-08-12

  Revised date: 2022-09-13

  Accepted date: 2022-11-01

  Online published: 2022-11-17

Supported by

National Science and Technology Major Project(2017-II-0007-0021)

摘要

针对传统光学测量技术难以完整地测量涡轮叶片复杂冷却结构内部三维流场的问题,采用磁共振测速(MRV)技术测量了一种复合冷却涡轮叶片内部的三维流场,并重点研究了叶片尾缘的流动特征。在通过MRV数据验证计算流体力学(CFD)准确性和可靠性的基础上,进一步通过CFD研究了全高、半高扰流柱对尾缘弦向出流的影响。结果表明,MRV成功地捕捉到了复合冷却涡轮叶片内部流动特征(如扰流柱和半劈缝处的漩涡结构等)。CFD与MRV数据在尾缘处有一致的出流趋势:气膜孔出流量沿展向逐渐减小,而半劈缝出流量沿展向逐渐增大。通过不同扰流柱设计的尾缘CFD对比发现,全高、半高扰流柱对尾缘流动的影响主要在于增大了流阻和出流的驱动压差,进而改变了出流情况,使得气膜孔整体出流量增大约2.8%,半劈缝整体出流量减小约2.8%。

本文引用格式

赖佑奎 , 马海腾 , 刘一粟 , 欧阳华 . 基于磁共振测速的复合冷却涡轮叶片流动分析[J]. 航空学报, 2023 , 44(14) : 627920 -627920 . DOI: 10.7527/S1000-6893.2022.27920

Abstract

It is difficult to use the traditional optical measurement technology measure the three-dimensional flow field inside the turbine blade with complex cooling structures. In this paper, the Magnetic Resonance Velocimetry (MRV) technology was employed to investigate the flow behavior inside a turbine blade with multiple cooling structures, particularly the flow in the blade trailing edge. MRV data were then compared with numerical simulations for validation purposes, and the effect of full-height or half-height pin fins on the flow out of trailing edge holes/slots was studied numerically. The results show that MRV is able to capture the internal flow characteristics of the cooled turbine blade, such as the vortices around the pin-fins and the slots. Furthermore, both MRV data and numerical results show that along the spanwise direction, the mass flow rate of the film hole decreases, while that of the slot increases. It is also found that the influence of full-height and half-height pin fins on the flow out of trailing edge holes/slots is mainly in increasing the flow resistance and the driving pressure difference of the outflow, thereby changing the mass flow rate through the holes/slots. The full-height and half-height pin fins increase the overall outflow of the film holes by about 2.8%, while reducing that of the slots by about 2.8%.

参考文献

1 YERANEE K, RAO Y. A review of recent studies on rotating internal cooling for gas turbine blades[J]. Chinese Journal of Aeronautics202134(7): 85-113.
2 叶林, 刘存良, 朱安冬, 等. 紧凑凸肋通道对尾缘劈缝气膜冷却特性的影响[J]. 航空学报202243(3): 125174.
  YE L, LIU C L, ZHU A D, et al. Influence of compact-ribbed passage on trailing-edge cutback film cooling performance[J]. Acta Aeronautica et Astronautica Sinica202243(3): 125174 (in Chinese).
3 姚然. 透平叶片端壁及前缘冷却特性的数值研究[D]. 合肥: 中国科学技术大学, 2021: 1-15.
  YAO R. Numerical study on cooling characteristics of turbine blade end wall and leading edge[D]. Hefei: University of Science and Technology of China, 2021: 1-15. (in Chinese)
4 王博, 刘洋, 王福德, 等. 航空发动机及燃气轮机涡轮叶片热障涂层技术研究及应用[J]. 航空发动机202147(): 25-31.
  WANG B, LIU Y, WANG F D, et al. Research and application of thermal barrier coatings for aeroengine and gas turbine blades[J]. Aeroengine202147(Sup 1): 25-31 (in Chinese).
5 王进, 孙杰, 赵占明, 等. 基于结构参数分析的姊妹孔气膜冷却性能研究[J]. 航空学报202142(7): 124775.
  WANG J, SUN J, ZHAO Z M, et al. Research on film cooling performance of sister hole based on structural parameter analysis[J]. Acta Aeronautica et Astronautica Sinica202142(7): 124775 (in Chinese).
6 NOURIN F N, AMANO R S. Review of gas turbine internal cooling improvement technology[J]. Journal of Energy Resources Technology2021143(8): 080801.
7 STRAU?WALD M, ABRAM C, SANDER T, et al. Time-resolved temperature and velocity field measurements in gas turbine film cooling flows with mainstream turbulence[J].Experiments in Fluids202062(3): 1-17.
8 ELFERT M, JARIUS M P, WEIGAND B. Detailed flow investigation using PIV in a typical turbine cooling geometry with ribbed walls[C]∥Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air.Vienna: ASME, 2004: 533-545.
9 LIOU T M, CHEN C C, CHEN M Y. Rotating effect on fluid flow in two smooth ducts connected by a 180-degree bend[J]. Journal of Fluids Engineering2003125(1): 138-148.
10 CHEAH S C, IACOVIDES H, JACKSON D C, et al. LDA investigation of the flow development through rotating U-ducts[J]. Journal of Turbomachinery1996118(3): 590-596.
11 ZHENG K, TIAN W, QIN J, et al. An experimental study on the improvements in the film cooling performance by an upstream micro-vortex generator[J]. Experimental Thermal and Fluid Science2021127: 110410.
12 万博, 田淑青, 浦健, 等. 高压涡轮工作叶片内部流场特性试验研究[J]. 推进技术202243(9): 101-111.
  WAN B, TIAN S Q, PU J, et al. Experimental study on internal flow field of high-pressure turbine working blade[J]. Journal of Propulsion Technology202243(9): 101-111 (in Chinese).
13 ELKINS C J, MARKL M, IYENGAR A, et al. Full-field velocity and temperature measurements using magnetic resonance imaging in turbulent complex internal flows[J]. International Journal of Heat and Fluid Flow200425(5): 702-710.
14 IACCARINO G, ELKINS C J. Rapid techniques for measuring and modeling turbulent flows in complex geometries[M]. Engineering Turbulence Modelling and Experiments 6. Amsterdam: Elsevier, 2005: 3-16.
15 BENSON M J, BINDON D, COOPER M, et al. Detailed velocity and heat transfer measurements in an advanced gas turbine vane insert using magnetic resonance velocimetry and infrared thermometry[J]. Journal of Turbomachinery2022144(2): 021009.
16 SAGLAM S, KREWINKEL R, DOMNICK C, et al. An experimental and numerical investigation of the three-dimensional flow field and heat transfer of a row of impinging jets[C]∥ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York: ASME, 2020, doi: 10.1115/GT2020-15966 .
17 ELKINS C J, MARKL M, PELC N, et al. 4D Magnetic resonance velocimetry for mean velocity measurements in complex turbulent flows[J].Experiments in Fluids200334(4): 494-503.
18 BRUSCHEWSKI M, WüSTENHAGEN C, DOMNICK C, et al. Assessment of the flow field and heat transfer in a vane cooling system using magnetic resonance velocimetry, thermochromic liquid crystals, and computational fluid dynamics[J]. Journal of Turbomachinery2023145(3): 031010.
19 WüSTENHAGEN C, DOMNICK C, JOHN K, et al. MRI investigations of internal blade cooling flow and CFD optimization through data matching[C]∥Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. New York: ASME, 2022: 1-12, doi: 10.1115/GT2022-82396 .
20 BAEK S, RYU J, BANG M, et al. Flow non-uniformity and secondary flow characteristics within a serpentine cooling channel of a realistic gas turbine blade[J]. Journal of Turbomachinery2022144(9): 091002.
21 YAPA S D. Turbulent coolant dispersion in the wake of a turbine vane trailing edge[D]. Palo Alto: Stanford University, 2015: 1-82.
22 SIEKMAN M, HELMER D, HWANG W, et al. A combined CFD/MRV study of flow through a pin bank[C]∥Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York: ASME, 2014: 1-10, doi: 10.1115/GT2014-25350 .
23 BAEK S, LEE S, HWANG W, et al. Experimental and numerical investigation of the flow in a trailing edge ribbed internal cooling passage[J]. Journal of Turbomachinery2019141(1): 1-9.
24 TSURU T, ISHIDA K, FUJITA J, et al. Three-dimensional visualization of flow characteristics using a magnetic resonance imaging in a lattice cooling channel[J]. Journal of Turbomachinery2019141(6): 061003.
25 WILLIAMS E T, CANIANO D C, DAVIS G, et al. Three dimensional measurements of a turbine blade using magnetic resonance thermometry and magnetic resonance velocimetry[C]∥ASME 2017 International Mechanical Engineering Congress and Exposition. New York: ASME, 2017: 1-15, doi: 10.1115/IMECE2017-71482 .
26 张归玲, 周铱然, 吴迪, 等. 4D Flow MRI血流动力学成像概述及其临床应用[J]. 放射学实践202237(1): 4-9.
  ZHANG G L, ZHOU Y R, WU D, et al. Overview of 4D Flow MRI hemodynamic imaging and its clinical application[J]. Radiologic Practice202237(1): 4-9 (in Chinese).
27 陈宇, 张宇, 周赜辰, 等. 颅内动脉瘤4D Flow MRI与CFD血流动力学参数测量的对比研究[J]. 磁共振成像20167(8): 613-617.
  CHEN Y, ZHANG Y, ZHOU Z C, et al. Hemodynamic parameters comparison between 4D Flow MRI and computational fluid dynamics for intracranial aneurysms[J]. Chinese Journal of Magnetic Resonance Imaging20167(8): 613-617 (in Chinese).
28 白琰. 典型涡轮叶片尾缘内通道流动与换热特性研究[D]. 南京: 南京航空航天大学, 2012: 1-38.
  BAI Y. Study on flow and heat transfer characteristics in the inner channel of typical turbine blade trailing edge[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 1-38 (in Chinese).
29 BIANCHINI C, FACCHINI B, SIMONETTI F, et al. Numerical and experimental investigation of turning flow effects on innovative pin fin arrangements for trailing edge cooling configurations[J]. Journal of Turbomachinery2012134(2): 021005.
30 吴伟龙, 徐华昭, 王建华. 涡轮叶片带扰流柱尾缘通道冷气流动的数值分析[J]. 推进技术202142(1): 163-172.
  WU W L, XU H Z, WANG J H. Numerical investigation of pin-fin influences on cooling air flow characteristics in turbine blade trailing edge region[J]. Journal of Propulsion Technology202142(1): 163-172 (in Chinese).
31 孔星傲, 吕东, 王晓放, 等. 涡轮叶片径向倾斜尾缘劈缝减阻能力数值研究[J]. 航空动力学报2022, doi: 10.13224/j.cnki.jasp.20210307 .
  KONG X A, LU D, WANG X F, et al. Numerical study on flow resistance reducing of turbine blade tilted trailing edge slots[J]. Journal of Aerospace Power2022, doi: 10.13224/j.cnki.jasp.20210307 (in Chinese).
32 张丽, 刘松龄, 朱惠人. 涡轮叶片尾缘扰流柱通道流动换热计算[J]. 推进技术201031(5): 593-598.
  ZHANG L, LIU S L, ZHU H R. Computation for the flow and heat transfer properties of a pin fin duct[J]. Journal of Propulsion Technology201031(5): 593-598 (in Chinese).
33 李坤成. 全国医用设备使用人员(MRI医师)上岗考试指南[M]. 北京: 军事医学科学出版社, 2009: 1-98.
  LI K C. Guide to the national examination for medical equipment users (MRI doctors)[M]. Beijing: Military Medical Science Press, 2009: 1-98 (in Chinese).
34 MARKL M. Velocity encoding and flow imaging[J]. University Hospital Freiburg, Dept of Diagnostic Radiology, 2005: 1-10.
35 TIMKO L P. Energy Efficient Engine high pressure turbine component test performance report: NASA-CR-168289 [R]. Washington D. C.: NASA, 1984.
36 MA H T, LIU Y S, LAI Y K, et al. Magnetic resonance velocimetry of a turbine blade with engine-representative internal and film cooling structures[J]. Journal of Turbomachinery2023145(1): 011004.
37 ICHIMIYA K, AKINO N, KUNUGI T. A fundamental study of the heat transfer and flow situation around spacers (a single row of several cylindrical rods in cross flow)[J]. International Journal of Heat and Mass Transfer199033(11): 2451-2462.
38 刘作宏. 涡轮叶片柱肋冷却通道流动换热特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2017: 1-107.
  LIU Z H. Study on flow and heat transfer characteristics of cooling channel of turbine blade column rib[D]. Harbin: Harbin Engineering University, 2017: 1-107. (in Chinese)
39 段敬添, 张科, 徐进, 等. 圆形肋柱通道强化换热流动机理实验研究[J]. 实验流体力学202135(4): 10-18.
  DUAN J T, ZHANG K, XU J, et al. Experimental investigation on flow mechanism driving heat transfer enhancement in a channel with circular pin fins[J]. Journal of Experiments in Fluid Mechanics202135(4): 10-18 (in Chinese).
40 罗稼昊, 饶宇, 杨力. 不同流动配置下涡轮叶片交错肋冷却流动传热特性数值模拟[J]. 推进技术202142(12): 2789-2798.
  LUO J H, RAO Y, YANG L. Numerical simulation of cooling flow and heat transfer characteristics of turbine blades with staggered ribs under different flow configurations[J]. Journal of Propulsion Technology202142(12): 2789-2798 (in Chinese).
41 周小勇, 谭昱, 江魁明, 等. 编码速率对大脑中动脉PC-MRI测量值的影响[J]. 临床放射学杂志201433(8): 1265-1268.
  ZHOU X Y, TAN Y, JIANG K M, et al. Influence of venc on PC-MRI flow velocity measurements of middle cerebral artery[J]. Journal of Clinical Radiology201433(8): 1265-1268 (in Chinese).
文章导航

/