双功能梯度碳纳米管增强复合材料旋转圆柱壳的振动分析
收稿日期: 2022-07-18
修回日期: 2022-10-20
录用日期: 2022-11-09
网络出版日期: 2022-11-17
基金资助
国家自然科学基金(51775257);辽宁省教育厅科学基金(2019LNJC01)
Vibration analysis of rotating dual⁃functional gradient composite cylindrical shell reinforced with carbon nanotubes
Received date: 2022-07-18
Revised date: 2022-10-20
Accepted date: 2022-11-09
Online published: 2022-11-17
Supported by
National Natural Science Foundation of China(51775257);Science Foundation of Education Department of Liaoning(2019LNJC01)
对3种边界条件下旋转态双功能梯度碳纳米管增强复合材料(DFG-CNTRC)圆柱壳的行波振动特性开展了研究。首先,根据建立的DFG-CNTRC圆柱壳模型,分析了以金属-陶瓷功能梯度材料为基体的5种类型碳纳米管增强材料的性能参数。其次,基于Sanders壳体理论和传递矩阵方法,考虑转速影响,推导了任一截面状态向量的常微分方程组和整体传递矩阵关系。最后,对简支-简支(S-S)、固支-固支(C-C)和固支-自由(C-F)3种典型边界条件下的动力学微分方程进行求解计算,验证了理论分析的正确性。研究表明,科氏力和离心力效应引起行波频率出现了分离现象和增大趋势,边界条件和碳纳米管体积分数对行波振动特性的影响显著,而基体材料体积分数指数对振动特性的影响较小,长度和厚度对结构振动特性影响均不同。
王宇 , 徐宏达 , 李昊 , 李昌 . 双功能梯度碳纳米管增强复合材料旋转圆柱壳的振动分析[J]. 航空学报, 2023 , 44(13) : 227827 -227827 . DOI: 10.7527/S1000-6893.2022.27827
The traveling wave vibration characteristics of a rotating Dual-Functionally Graded Carbon Nanotube Reinforced Composite (DFG-CNTRC) cylindrical shell are investigated under three boundary conditions. Firstly, according to the established shell model, the performance parameters of five types of carbon nanotube reinforced materials based on the metal-ceramic functionally graded matrix are analyzed. Secondly, based on the Sanders shell theory and transfer matrix method, the ordinary differential equations and the global transfer matrix relation for any cross section state vector are derived considering the influence of rotational speed. Finally, the dynamic differential equations are solved for three typical boundary conditions, namely, Simply supported-Simply supported (S-S), Clamped-Simply supported (C-S) and Clamped-Free (C-F), and the correctness of the theoretical analysis is verified. The research shows that the effect of Coriolis force and centrifugal force causes the separation phenomenon and increasing trend of the traveling wave frequency, and the boundary conditions and the volume fraction of carbon nanotubes have a significant influence on travelling wave vibration characteristics, while the volume fraction index of the matrix material has little influence, and the length and thickness have different effects on the vibration characteristics of the shell.
1 | GUO X, ZENG J, MA H, et al. A dynamic model for simulating rubbing between blade and flexible casing[J]. Journal of Sound and Vibration, 2020, 466: 115036. |
2 | 李晖, 吕海宇, 邹泽煜, 等. 热环境下纤维增强复合材料圆柱壳非线性振动分析与验证[J]. 航空学报, 2022, 43(9): 425642. |
LI H, LYU H Y, ZOU Z Y, et al. Analysis and verification of nonlinear vibrations of fiber-reinforced composite cylindrical shells in thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 425642 (in Chinese). | |
3 | LI H, PANG F, GONG Q, et al. Free vibration analysis of axisymmetric functionally graded doubly-curved shells with un-uniform thickness distribution based on Ritz method[J]. Composite Structures, 2019, 225: 111145. |
4 | WANG G J, CAI Y P, MA Y J, et al. Ultrastrong and stiff carbon nanotube/aluminum-copper nanocomposite via enhancing friction between carbon nanotubes[J]. Nano Letters, 2019, 19(9): 6255-6262. |
5 | SUN S, CAO D Q, HAN Q K. Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the Rayleigh-Ritz method[J]. International Journal of Mechanical Sciences, 2013, 68: 180-189. |
6 | 韩清凯, 王宇, 李学军. 旋转薄壁圆柱壳的高节径振动特性以及篦齿结构的影响[J]. 中国科学: 物理学 力学 天文学, 2013, 43(4): 436-458. |
HAN Q K, WANG Y, LI X J. High nodal diameter vibration characteristics of rotating shell and the effects of its sealing teeth[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2013, 43(4): 436-458 (in Chinese). | |
7 | 王宇, 谷月, 李晖, 等. 高速旋转薄壁圆柱壳的行波共振特性研究[J]. 振动与冲击, 2016, 35(5): 222-227. |
WANG Y, GU Y, LI H, et al. Travelling wave resonance characteristics of a high-speed rotating thin cylindrical shell[J]. Journal of Vibration and Shock, 2016, 35(5): 222-227 (in Chinese). | |
8 | QUOC T H, HUAN D T, PHUONG H T. Vibration characteristics of rotating functionally graded circular cylindrical shell with variable thickness under thermal environment[J]. International Journal of Pressure Vessels and Piping, 2021, 193: 104452. |
9 | DONG Y H, LI Y H, CHEN D, et al. Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion[J]. Composites Part B: Engineering, 2018, 145: 1-13. |
10 | DONG Y H, HE L W, WANG L, et al. Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: an analytical study[J]. Aerospace Science and Technology, 2018, 82-83: 466-478. |
11 | DONG Y H, ZHU B, WANG Y, et al. Nonlinear free vibration of graded graphene reinforced cylindrical shells: Effects of spinning motion and axial load[J]. Journal of Sound and Vibration, 2018, 437: 79-96. |
12 | DONG Y H, LI X Y, GAO K, et al. Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: Effects of spinning motion and thermal environment[J]. Nonlinear Dynamics, 2020, 99(2): 981-1000. |
13 | SHENG G G, WANG X. The non-linear vibrations of rotating functionally graded cylindrical shells[J]. Nonlinear Dynamics, 2017, 87(2): 1095-1109. |
14 | SHEN H S, XIANG Y. Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 213-216: 196-205. |
15 | 沈惠申. 功能梯度碳纳米管增强复合材料结构建模与分析研究进展[J]. 力学进展, 2016, 46(1): 478-505. |
SHEN H S. Modeling and analysis of functionally graded carbon nanotube reinforced composite structures: A review[J]. Advances in Mechanics, 2016, 46(1): 478-505 (in Chinese). | |
16 | SONG Z G, ZHANG L W, LIEW K M. Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments[J]. International Journal of Mechanical Sciences, 2016, 115-116: 339-347. |
17 | QIN B, ZHONG R, WANG T, et al. A unified Fourier series solution for vibration analysis of FG-CNTRC cylindrical, conical shells and annular plates with arbitrary boundary conditions[J]. Composite Structures, 2020, 232: 111549. |
18 | THOMAS B, ROY T. Vibration and damping analysis of functionally graded carbon nanotubes reinforced hybrid composite shell structures[J]. Journal of Vibration and Control, 2017, 23(11): 1711-1738. |
19 | CIVALEK ?. Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method[J]. Composites Part B: Engineering, 2017, 111: 45-59. |
20 | KIANI Y, DIMITRI R, TORNABENE F. Free vibration of FG-CNT reinforced composite skew cylindrical shells using the Chebyshev-Ritz formulation[J]. Composites Part B: Engineering, 2018, 147: 169-177. |
21 | LEI Z X, ZHANG L W, LIEW K M. Vibration analysis of CNT-reinforced functionally graded rotating cylindrical panels using the element-free kp-Ritz method[J]. Composites Part B: Engineering, 2015, 77: 291-303. |
22 | QIN Z, PANG X, SAFAEI B, et al. Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions[J]. Composite Structures, 2019, 220: 847-860. |
23 | HEYDARPOUR Y, MALEKZADEH P. Dynamic stability of rotating FG-CNTRC cylindrical shells under combined static and periodic axial loads[J]. International Journal of Structural Stability and Dynamics, 2018, 18(12): 1850151. |
24 | ROUT M, KARMAKAR A. Free vibration of rotating pretwisted CNTs-reinforced shallow shells in thermal environment[J]. Mechanics of Advanced Materials and Structures, 2019, 26(21): 1808-1820. |
25 | SOBHANIARAGH B, BATRA R C, MANSUR W J, et al. Thermal response of ceramic matrix nanocomposite cylindrical shells using Eshelby-Mori-Tanaka homogenization scheme[J]. Composites Part B: Engineering, 2017, 118: 41-53. |
26 | CHENG H, LI C F, JIANG Y L. Free vibration analysis of rotating pre-twisted ceramic matrix carbon nanotubes reinforced blades[J]. Mechanics of Advanced Materials and Structures, 2022, 29(14): 2040-2052. |
27 | MIAO X Y, LI C F, JIANG Y L. Free vibration analysis of metal-ceramic matrix composite laminated cylindrical shell reinforced by CNTs[J]. Composite Structures, 2021, 260: 113262. |
28 | XIANG Y, YUAN L, HUANG Y, et al. A novel matrix method for coupled vibration and damping effect analyses of liquid-filled circular cylindrical shells with partially constrained layer damping under harmonic excitation[J]. Applied Mathematical Modelling, 2011, 35(5): 2209-2220. |
29 | 李恩奇, 李道奎, 唐国金, 等. 基于传递函数方法的局部覆盖环状CLD圆柱壳动力学分析[J]. 航空学报, 2007, 28(6): 1487-1493. |
LI E Q, LI D K, TANG G J, et al. Dynamic analysis of cylindrical shell with partially covered ring-shape constrained layer damping by the transfer function method[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6): 1487-1493 (in Chinese). | |
30 | PRADHAN S C, LOY C T, LAM K Y, et al. Vibration characteristics of functionally graded cylindrical shells under various boundary conditions[J]. Applied Acoustics, 2000, 61(1): 111-129. |
31 | LI H, LAM K Y, NG T Y. Rotating shell dynamics[M]. Amsterdam: Elsevier, 2005. |
32 | 钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报, 1994, 34(2): 131-136. |
ZHONG W X. On precise time-integration method for structural dynamics[J]. Journal of Dalian University of Technology, 1994, 34(2): 131-136 (in Chinese). | |
33 | LI X, CHEN Y. Transient dynamic response analysis of orthotropic circular cylindrical shell under external hydrostatic pressure[J]. Journal of Sound and Vibration, 2002, 257(5): 967-976. |
/
〈 |
|
〉 |