[1] DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[M]∥Classic works of the Dempster-Shafer theory of belief functions. Berlin, Heidelberg: Springer, 2008: 57-72.
[2] SHAFER G. A mathematical theory of evidence[M]. Princeton: Princeton University Press, 1976.
[3] HE Y, XIONG W, LIU J, et al. Review and prospect of research on maritime information perception and fusion[J]. Fire Control & Command Control, 2018, 43(6): 1-10 (in Chinese). 何友, 熊伟, 刘俊, 等. 海上信息感知与融合研究进展及展望[J]. 火力与指挥控制, 2018, 43(6): 1-10.
[4] HE Y, HU L F, GUAN X, et al. A new method of measuring the degree of conflict among general basic probability assignments[J]. Science in China (Information Sciences), 2011, 41(8): 989-997(in Chinese). 何友, 胡丽芳, 关欣, 等. 一种度量广义基本概率赋值冲突的方法[J]. 中国科学(信息科学), 2011, 41(8): 989-997.
[5] LIU Z G, CHENG Y M, PAN Q, et al. Target identification by adaptive combination of conflicting evidence[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1426-1432 (in Chinese). 刘准钆, 程咏梅, 潘泉, 等. 证据冲突下自适应融合目标识别算法[J]. 航空学报, 2010, 31(7): 1426-1432.
[6] LIU Z G, ZHANG X X, NIU J W, et al. Combination of classifiers with different frames of discernment based on belief functions[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(7): 1764-1774.
[7] SHENG W J, LI X D. Multi-task learning for gait-based identity recognition and emotion recognition using attention enhanced temporal graph convolutional network[J]. Pattern Recognition, 2021, 114: 107868.
[8] PAN Q, HU Y M, MA J R. Intelligence, surveillance and reconnaissance based on variational Bayesian joint optimization[J]. Command Information System and Technology, 2020, 11(2): 1-8 (in Chinese). 潘泉, 胡玉梅, 马季容. 基于变分贝叶斯联合优化的情报监视与侦察[J]. 指挥信息系统与技术, 2020, 11(2): 1-8.
[9] HE Y, ZHOU W. Big data technology for maritime information sensing[J]. Command Information System and Technology, 2018, 9(2): 1-7 (in Chinese). 何友, 周伟. 海上信息感知大数据技术[J]. 指挥信息系统与技术, 2018, 9(2): 1-7.
[10] GUO Q, HE Y. DSm evidence modeling and radar emitter fusion recognition method based on cloud model[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1779-1785 (in Chinese). 郭强, 何友. 基于云模型的DSm证据建模及雷达辐射源识别方法[J]. 电子与信息学报, 2015, 37(8): 1779-1785.
[11] GUAN X, SUN G D, GUO Q, et al. Radar emitter parameter recognition based on interval number and evidence theory[J]. Systems Engineering and Electronics, 2014, 36(7): 1269-1274 (in Chinese). 关欣, 孙贵东, 郭强, 等. 基于区间数和证据理论的雷达辐射源参数识别[J]. 系统工程与电子技术, 2014, 36(7): 1269-1274.
[12] LIU Z G, LIU Y, DEZERT J, et al. Evidence combination based on credal belief redistribution for pattern classification[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(4): 618-631.
[13] ZHOU Q L, DENG Y. Fractal-based belief entropy[J]. Information Sciences, 2022, 587: 265-282.
[14] DENG Y, JIANG W, HAN D Q. Basic frame of generalized evidence theory[J]. Journal of Xi'an Jiaotong University, 2010, 44(12): 119-124 (in Chinese). 邓勇, 蒋雯, 韩德强. 广义证据理论的基本框架[J]. 西安交通大学学报, 2010, 44(12): 119-124.
[15] HU L F, GUAN X, HE Y. Recursive target identification fusion methods based on Dezert-Smarandache theory[J]. Control Theory & Applications, 2012, 29(1): 79-84 (in Chinese). 胡丽芳, 关欣, 何友. 基于Dezert-Smarandache理论的递归目标识别融合方法[J]. 控制理论与应用, 2012, 29(1): 79-84.
[16] HU L F, GUAN X, HE Y. A new combination rule based on DSmT[J]. Fire Control and Command Control, 2009, 34(7): 9-11 (in Chinese). 胡丽芳, 关欣, 何友. 一种新的基于DSmT的合成公式[J]. 火力与指挥控制, 2009, 34(7): 9-11.
[17] LIU Z G, PAN Q, HAN D Q. A brief introduction to multi-source information fusion [J]. Scientia Sinica (Informationis), 2020, 50(11): 1781-1782 (in Chinese). 刘准钆, 潘泉, 韩德强. 多源信息融合专题简介[J]. 中国科学: 信息科学, 2020, 50(11): 1781-1782.
[18] PAN Q, WANG Z F, LIANG Y, et al. Basic methods and progress of information fusion (Ⅱ)[J]. Control Theory & Applications, 2012, 29(10): 1233-1244 (in Chinese). 潘泉, 王增福, 梁彦, 等. 信息融合理论的基本方法与进展(Ⅱ)[J]. 控制理论与应用, 2012, 29(10): 1233-1244.
[19] TESSEM B. Approximations for efficient computation in the theory of evidence[J]. Artificial Intelligence, 1993, 61(2): 315-329.
[20] LI F, LI S M, DENOEUX T. Clustering ensemble method based on belief function theory[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2019, 11(3): 332-339 (in Chinese). 李锋, 李寿梅, Denoeux Thierry. 基于证据理论的聚类集成方法[J]. 南京信息工程大学学报(自然科学版), 2019, 11(3): 332-339.
[21] WANG D, LI Q, JIANG W, et al. New method to combine conflict evidence based on pignistic probability distance[J]. Infrared and Laser Engineering, 2009, 38(1): 149-154 (in Chinese). 王栋, 李齐, 蒋雯, 等. 基于pignistic概率距离的冲突证据合成方法[J]. 红外与激光工程, 2009, 38(1): 149-154.
[22] SMETS P, KENNES R. The transferable belief model[J]. Artificial Intelligence, 1994, 66(2): 191-234.
[23] SMETS P. Decision making in the TBM: The necessity of the pignistic transformation[J]. International Journal of Approximate Reasoning, 2005, 38(2): 133-147.
[24] JIANG W, HUANG C, DENG X Y. A new probability transformation method based on a correlation coefficient of belief functions[J]. International Journal of Intelligent Systems, 2019, 34(6): 1337-1347.
[25] COBB B R, SHENOY P P. On the plausibility transformation method for translating belief function models to probability models[J]. International Journal of Approximate Reasoning, 2006, 41(3): 314-330.
[26] CUZZOLIN F. On the relative belief transform[J]. International Journal of Approximate Reasoning,2012,53(5): 786-804.
[27] HAN D Q, DEZERT J, DUAN Z S. Evaluation of probability transformations of belief functions for decision making[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46(1): 93-108.
[28] FAN H. Quantum computation and quantum simulation[J]. Acta Physica Sinica, 2018, 67(12): 16-25 (in Chinese). 范桁. 量子计算与量子模拟[J]. 物理学报, 2018, 67(12): 16-25.
[29]
[30] SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Review, 1999, 41(2): 303-332.
[31] DUAN B J, YUAN J B, YU C H, et al. A survey on HHL algorithm: From theory to application in quantum machine learning[J]. Physics Letters A, 2020, 384(24): 126595.
[32] HUANG Y M, LEI H, LI X Y. A survey on quantum machine learning[J]. Chinese Journal of Computers, 2018, 41(1): 145-163 (in Chinese). 黄一鸣, 雷航, 李晓瑜. 量子机器学习算法综述[J]. 计算机学报, 2018, 41(1): 145-163.
[33] LIU Z G, CHENG Y M, PAN Q, et al. Weight evidence combination for multi-sensor conflict information[J]. Chinese Journal of Sensors and Actuators, 2009, 22(3): 366-370 (in Chinese). 刘准钆, 程咏梅, 潘泉, 等. 多传感器冲突信息的加权融合算法[J]. 传感技术学报, 2009, 22(3): 366-370.
[34] DENG Z, WANG J Y. A novel decision probability transformation method based on belief interval[J]. Knowledge-Based Systems, 2020, 208: 106427.
[35] SMETS P. The application of the matrix calculus to belief functions[J]. International Journal of Approximate Reasoning, 2002, 31(1-2): 1-30.
[36] ZHOU Q, HUANG Y, DENG Y. Belief evolution network: Probability transformation of basic belief assignment and fusion conflict probability[J]. arXiv preprint: 2110.03468, 2021.