固体力学与飞行器总体设计

小行星探测器电磁阻尼着陆缓冲遇阻特性

  • 王廷章 ,
  • 全齐全 ,
  • 艾鑫 ,
  • 唐德威 ,
  • 邓宗全
展开
  • 哈尔滨工业大学 机器人技术与系统国家重点实验室,哈尔滨 150001
.E-mail: quanqiquan@hit.edu.cn

收稿日期: 2022-07-08

  修回日期: 2022-09-05

  录用日期: 2022-10-24

  网络出版日期: 2022-11-04

基金资助

国家自然科学基金(51975139)

Electromagnetic damping buffering characteristics of aster-oid probe upon encountering obstructions

  • Tingzhang WANG ,
  • Qiquan QUAN ,
  • Xin AI ,
  • Dewei TANG ,
  • Zongquan DENG
Expand
  • State Key Laboratory of Robotics and System,Harbin Institute of Technology,Harbin 150001,China

Received date: 2022-07-08

  Revised date: 2022-09-05

  Accepted date: 2022-10-24

  Online published: 2022-11-04

Supported by

National Natural Science Foundation of China(51975139)

摘要

着陆缓冲是小行星原位探测的基础。探测前小行星表面形貌未知,着陆缓冲时容易遇到阻碍并产生倾覆,因此需要研究小行星探测器着陆缓冲遇阻特性。建立机械与控制耦合的着陆缓冲动力学联合仿真模型,并采用神经网络对其碰撞接触参数进行标定。基于建立的仿真模型,理论研究了切向着陆速度、法向着陆速度、探测器偏航角、着陆倾角对着陆缓冲遇阻过程的影响规律,探究了不同偏航角对着陆过程各着陆缓冲阶段的影响,分析了着陆遇阻倾覆的主要影响因素及其影响规律。在微重力环境模拟小行星着陆缓冲实验平台上开展了着陆缓冲遇阻实验,研究了初始着陆参数及着陆介质对着陆缓冲过程的影响规律并验证了仿真模型。仿真获得的着陆缓冲时间与实验结果的误差小于15%,表明建立的仿真模型是准确的。

本文引用格式

王廷章 , 全齐全 , 艾鑫 , 唐德威 , 邓宗全 . 小行星探测器电磁阻尼着陆缓冲遇阻特性[J]. 航空学报, 2023 , 44(13) : 227783 -227783 . DOI: 10.7527/S1000-6893.2022.27783

Abstract

Landing buffer is the basis for in-situ exploration of asteroids. The unknown surface morphology of asteroids could easily lead to overturn of the probe upon encountering obstacles during the landing process. It is therefore necessary to investigate the electromagnetic damping buffering characteristics in the obstruction encountering process. First, we establish a co-simulation model of landing buffering dynamics coupling mechanics and control, and calibrate the collision contact parameters with the neural network. Based on the established simulation model, the influence of tangential landing speed, normal landing speed, probe yaw angle, and landing inclination on the landing process is theoretically studied, and the effect of yaw angles on different landing buffer stages is explored. The main influencing factors and their influence on the overturning due to obstacle encounter are analyzed. Finally, landing buffer experiments are performed on the microgravity simulation asteroid landing buffer experimental platform to study the influence of the initial landing parameters and the landing medium on the landing buffer process, verifying the established simulation model. The error between the simulation landing buffer time and the experimental results is smaller than 15%, demonstrating the accuracy of the established simulation model.

参考文献

1 ANTHONY N, EMAMI M R. Asteroid engineering: the state-of-the-art of Near-Earth Asteroids science and technology[J]. Progress in Aerospace Sciences2018100: 1-17.
2 BUS S. Phase II of the small main-belt asteroid spectroscopic survey A feature-based taxonomy[J]. Icarus2002158(1): 146-177.
3 DEMEO F E, BINZEL R P, SLIVAN S M, et al. An extension of the Bus asteroid taxonomy into the near-infrared[J]. Icarus2009202(1): 160-180.
4 RUMPF C M, MATHIAS D L, WHEELER L F, et al. Deflection driven evolution of asteroid impact risk under large uncertainties[J]. Acta Astronautica2020176: 276-286.
5 VON ROSENVINGE T T, BRANDT J C, FARQUHAR R W. The international cometary explorer mission to comet giacobini-zinner[J]. Science1986232(4748): 353-356.
6 JIANG Y, JI J H, HUANG J C, et al. Boulders on asteroid Toutatis as observed by Chang’e-2[J]. Scientific Reports20155: 16029.
7 OBERST J, MOTTOLA S, DI MARTINO M, et al. A model for rotation and shape of asteroid 9969 Braille from ground-based observations and images obtained during the deep space 1 (DS1) flyby[J]. Icarus2001153(1): 16-23.
8 YADA T, FUJIMURA A, ABE M, et al. Hayabusa-returned sample curation in the planetary material sample curation facility of JAXA[J]. Meteoritics & Planetary Science201449(2): 135-153.
9 SAWADA H, OKAZAKI R, TACHIBANA S, et al. Hayabusa2 sampler: Collection of asteroidal surface material[J]. Space Science Reviews2017208(1): 81-106.
10 BIERHAUS E B, CLARK B C, HARRIS J W, et al. The OSIRIS-REx spacecraft and the touch-and-go sample acquisition mechanism (TAGSAM)[J]. Space Science Reviews2018214(7): 107.
11 GLASSMEIER K H, BOEHNHARDT H, KOSCHNY D, et al. The Rosetta mission: Flying towards the origin of the solar system[J]. Space Science Reviews2007128(1):9.
12 SCHEERES D J, SáNCHEZ P. Implications of cohesive strength in asteroid interiors and surfaces and its measurement[J]. Progress in Earth and Planetary Science20185(1): 25.
13 YANG J Z, ZHU W, MAN J F, et al. Design and verification of the landing impact attenuation system for Chang’E-3 lander[J]. Scientia Sinica Technologica201444(5): 440-449.
14 黄明吉, 李斌, 董秀萍. 基于三维骨架细化的金属橡胶三维建模方法研究[J]. 材料导报202236(1): 178-182.
  HUANG M J, LI B, DONG X P. Research on 3D modeling method of metal rubber based on 3D skeleton refinement[J]. Materials Reports202236(1): 178-182 (in Chinese).
15 SPENCER D A, BLANCHARD R C, BRAUN R D, et al. Mars pathfinder entry, descent, and landing reconstruction[J]. Journal of Spacecraft and Rockets199936(3): 357-366.
16 LI F, WEI G, QI W, et al. Modeling and adaptive control of magneto-rheological buffer system for aircraft landing gear[J]. Applied Mathematical Modelling201539(9): 2509-2517.
17 WU X Y, KüPPERS M, GRIEGER B, et al. Characterization of the Agilkia region through discrete-element simulation of Philae’s rebound[J]. Astronomy & Astrophysics2019630: A14.
18 GOLOMBEK M, GROTT M, KARGL G, et al. Geology and physical properties investigations by the InSight lander[J]. Space Science Reviews2018214(5): 84.
19 GOLOMBEK M P, COOK R A, ECONOMOU T, et al. Overview of the Mars Pathfinder mission and assessment of landing site predictions[J]. Science1997278(5344): 1743-1748.
20 ROLL R, WITTE L, ARNOLD W. ROSETTA lander Philae-soil strength analysis[J]. Icarus2016280: 359-365.
21 WITTE L, ROLL R, BIELE J, et al. Rosetta lander Philae-Landing performance and touchdown safety assessment[J]. Acta Astronautica2016125: 149-160.
22 ULAMEC S, FANTINATI C, MAIBAUM M, et al. Rosetta Lander-Landing and operations on comet 67P/Churyumov-Gerasimenko[J]. Acta Astronautica2016125: 80-91.
23 SUGITA S, HONDA R, MOROTA T, et al. The geomorphology, color, and thermal properties of Ryugu: implications for parent-body processes[J]. Science2019364(6437): 252.
24 POLISHOOK D, MOSKOVITZ N, BINZEL R P, et al. A 2 km-size asteroid challenging the rubble-pile spin bar-rier—A case for cohesion[J]. Icarus2016267: 243-254.
25 RICHARDSON J E, STECKLOFF J K, MINTON D A. Impact-produced seismic shaking and regolith growth on asteroids 433 Eros, 2867 ?teins, and 25143 Itokawa[J]. Icarus2020347: 113811.
文章导航

/