航空发动机排气系统单站RCS准确高效仿真方法与试验验证
收稿日期: 2022-06-24
修回日期: 2022-07-19
录用日期: 2022-08-15
网络出版日期: 2022-11-04
基金资助
国家自然科学基金(61771238);南京航空航天大学雷达成像与微波光子学教育部重点实验室项目(NJ20220004)
Accurate and efficient simulation method and experimental verification of monostatic RCS for aeroengine exhaust systems
Received date: 2022-06-24
Revised date: 2022-07-19
Accepted date: 2022-08-15
Online published: 2022-11-04
Supported by
National Nature Science Foundation of China(61771238);the Project of Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of Education(NJ20220004)
准确高效的电磁散射仿真方法对设计隐身航空发动机排气系统非常重要。将特征基函数法(CBFM)、多层快速多极子算法(MLFMA)、插值分解(ID)算法和并行技术相结合,对发动机排气系统的单站雷达散射截面(RCS)进行仿真计算。插值分解(ID)可以对单站激励矩阵进行低秩压缩,因此可以减少矩阵方程的求解次数,显著提高了传统CBFM-MLFMA的计算效率。为了验证算法的正确性,对轴对称排气系统模型进行了加工和RCS试验测试。与测试结果相比,仿真结果与其吻合良好,验证了算法的精度。
关键词: 发动机; 排气系统; 电磁散射; 雷达散射截面(RCS); 矩量法(MoM); 特征基函数法(CBFM); 插值分解(ID)
陈新蕾 , 卢立昌 , 吉洪湖 , 顾长青 , 高帆 , 施小娟 . 航空发动机排气系统单站RCS准确高效仿真方法与试验验证[J]. 航空学报, 2023 , 44(12) : 327676 -327676 . DOI: 10.7527/S1000-6893.2022.27676
Accurate and efficient electromagnetic scattering simulation method is very important for the design of stealthy aeroengine exhaust systems. In this paper, the Characteristic Basis Function Method (CBFM), Multilevel Fast Multipole Algorithm (MLFMA), Interpolation Decomposition (ID) algorithm and parallel technology are combined to simulate the monostatic Radar Cross Section (RCS) of engine exhaust systems. ID can compress the monostatic excitation matrix due to its low rank property, so it can reduce the number of times of solving matrix equations and significantly improve the computational efficiency of the conventional CBFM-MLFMA. To verify the correctness of the algorithm proposed, the axisymmetric exhaust system is machined and its RCS is measured. The simulation results are in good agreement with the measured results, which demonstrates the accuracy of the algorithm.
1 | 桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013. |
SANG J H. Low-observable technologies of aircraft[M]. Beijing: Aviation Industry Press, 2013 (in Chinese). | |
2 | 吉洪湖. 飞发一体化设计中的发动机隐身问题[J]. 航空动力, 2018(2): 67-71. |
JI H H. Fundamental issues of aircraft/engine integration for low observability[J]. Aerospace Power, 2018(2): 67-71 (in Chinese). | |
3 | 尚守堂, 曹茂国, 邓洪伟, 等. 航空发动机隐身技术研究及管理工作探讨[J]. 航空发动机, 2014, 40(2): 6-9, 18. |
SHANG S T, CAO M G, DENG H W, et al. Discuss on aeroengine stealth technology research and management[J]. Aeroengine, 2014, 40(2): 6-9, 18 (in Chinese). | |
4 | 邓洪伟, 尚守堂, 金海, 等. 航空发动机隐身技术分析与论述[J]. 航空科学技术, 2017, 28(10): 1-7. |
DENG H W, SHANG S T, JIN H, et al. Analysis and discussion on stealth technology of aero engine[J]. Aeronautical Science & Technology, 2017, 28(10): 1-7 (in Chinese). | |
5 | LING H, CHOU R C, LEE S W. Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity[J]. IEEE Transactions on Antennas and Propagation, 1989, 37(2): 194-205. |
6 | 杨胜男, 邵万仁, 尚守堂, 等. 单边膨胀球面2元喷管雷达隐身修形研究[J]. 航空发动机, 2016, 42(5): 55-62. |
YANG S N, SHAO W R, SHANG S T, et al. Study on radar stealth shaping for single expansion ramp with spherical 2-D nozzle[J]. Aeroengine, 2016, 42(5): 55-62 (in Chinese). | |
7 | 姚伦标, 杜凯, 李宁, 等. 火焰稳定器修形对发动机后向RCS的影响[J]. 南京航空航天大学学报, 2021, 53(4): 570-577. |
YAO L B, DU K, LI N, et al. Influence of flame stabilizer modification on aero-engine backward RCS[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(4): 570-577 (in Chinese). | |
8 | 李岳锋, 杨青真, 环夏, 等. 出口宽高比对S形二元收敛喷管雷达散射截面的影响[J]. 航空动力学报, 2014, 29(3): 645-651. |
LI Y F, YANG Q Z, HUAN X, et al. Influence on radar cross-section of S-shaped two dimensional convergent nozzles with different outlet width-height ratios[J]. Journal of Aerospace Power, 2014, 29(3): 645-651 (in Chinese). | |
9 | HARRINGTON R F. Field computation by moment methods[M]. New York: Macmillan, 1968 |
10 | GIBSON W C. The method of moments in electromagnetics[M]. Boca Raton: Chapman & Hall, 2007 |
11 | XIANG Z G, CHIA T T. A hybrid BEM/WTM approach for analysis of the EM scattering from large open-ended cavities[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(2): 165-173. |
12 | SONG J, LU C C, CHEW W C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(10): 1488-1493. |
13 | LUCENTE E, MONORCHIO A, MITTRA R. An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(4): 999-1007. |
14 | CHEN X L, GU C Q, LI Z, et al. Efficient iterative solution of electromagnetic scattering using adaptive cross approximation enhanced characteristic basis function method[J]. IET Microwaves, Antennas & Propagation, 2015, 9(3): 217-223. |
15 | CHEN X L, GU C Q, DING J, et al. Multilevel fast adaptive cross-approximation algorithm with characteristic basis functions[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(9): 3994-4002. |
16 | GARCIA E, DELGADO C, DIEGO I G, et al. An iterative solution for electrically large problems combining the characteristic basis function method and the multilevel fast multipole algorithm[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(8): 2363-2371. |
17 | GARCìA E, DELGADO C, LOZANO L, et al. Analysis of the parameters of an approach that combines the characteristic basis function method and the multilevel fast multipole[J]. IET Microwaves, Antennas & Propagation, 2011, 5(4): 419. |
18 | PAN X M, SHENG X Q. Accurate and efficient evaluation of spatial electromagnetic responses of large scale targets[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(9): 4746-4753. |
19 | CHENG H, GIMBUTAS Z, MARTINSSON P G, et al. On the compression of low rank matrices[J]. SIAM Journal on Scientific Computing, 2005, 26(4): 1389-1404. |
20 | RAO S, WILTON D, GLISSON A. Electromagnetic scattering by surfaces of arbitrary shape[J]. IEEE Transactions on Antennas and Propagation, 1982, 30(3): 409-418. |
21 | ZHAO K Z, VOUVAKIS M N, LEE J F. The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems[J]. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(4): 763-773. |
22 | SCHRODER A, BRüNS H D, SCHUSTER C. A hybrid approach for rapid computation of two-dimensional monostatic radar cross section problems with the multilevel fast multipole algorithm[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(12): 6058-6061. |
23 | FEI C, CHEN X L, ZHANG Y, et al. A hybrid method to accelerate the calculation of two-dimensional monostatic radar cross section on pec targets[J]. Progress in Electromagnetics Research M, 2016, 50: 47-54. |
/
〈 |
|
〉 |