振动对液滴撞击壁面铺展特性的影响
收稿日期: 2022-08-10
修回日期: 2022-09-19
录用日期: 2022-10-11
网络出版日期: 2022-10-26
基金资助
国家自然科学基金(52276070)
Effects of vibration on spreading characteristics of droplet impacting on surface
Received date: 2022-08-10
Revised date: 2022-09-19
Accepted date: 2022-10-11
Online published: 2022-10-26
Supported by
National Natural Science Foundation of China(52276070)
在航空航天领域的喷雾冷却过程中,被冷却器件时常处于振动状态,因此确定振动对喷雾冷却液滴撞击壁面动态行为的影响有重要意义。基于VOF方法和动网格模型建立了液滴撞击垂直简谐振动壁面的数值模型,研究了壁面振幅、频率和初始相位角对铺展特性的影响。结果表明,相同撞击条件下,壁面振动不仅影响着最大铺展因子和铺展时间的大小,还会使液膜发生断裂抑制和飞溅行为;初始相位角为0°时,铺展时间随振幅和频率的增加而减小;最大铺展因子随振幅的增加一直增加,振幅较小时,最大铺展因子随频率的增加先增加后减小,在共振频率处取得最大值且减小程度随振幅的增大逐渐降低,振幅较大时,最大铺展因子随频率的增加变为一直增加;铺展时间和最大铺展因子随初始相位角的变化趋势主要与频率有关,频率较小时,初始相位角对铺展时间和最大铺展因子无明显影响,随着频率的增加,铺展时间先后在180°和90°相位最大,最大铺展因子先后在0°和180°相位最大。
朱劭恺 , 胡定华 , 李强 . 振动对液滴撞击壁面铺展特性的影响[J]. 航空学报, 2023 , 44(16) : 127911 -127911 . DOI: 10.7527/S1000-6893.2022.27911
During the spray cooling in aerospace field, the devices need to be cooled are in a constant state of vibration. It is significant to study the effects of vibration on droplet impacting behaviors of spray cooling. Based on the Volume of Fluid (VOF) method and the dynamic mesh model, the numerical model of droplet impacting on vertical simple harmonic vibrating solid surface was established, and the effects of vibration amplitude, frequency and initial phase angle on the spreading characteristics were analyzed. The results showed that, under the same impact condition, the surface vibration not only affects the maximum spreading factor and the spreading time, but also causes the fracture suppression and splashing behaviors of film. When the initial phase angle is 0°, the spreading time decreases with the increase of amplitude and frequency, and the maximum spreading factor increases with the increase of amplitude. When the amplitude is small, the maximum spreading factor increases first and then decreases with the increase of frequency, the maximum value is obtained at the resonant frequency and the degree of decrease gradually decreases with the increase of amplitude. When the amplitude is large, the maximum spreading factor becomes increasing with the increase of frequency. The trend of the spreading time and the maximum spreading factor with the initial phase angle is mainly related to the frequency. When the frequency is small, the initial phase angle has no significant influence on the spreading time and the maximum spreading factor. With the increase of frequency, the phase of spreading time is maximum at 180° and 90° successively, and the phase of maximum spreading factor is maximum at 0° and 180° successively.
1 | BRELJE B J, MARTINS J R R A. Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches[J]. Progress in Aerospace Sciences, 2019, 104: 1-19. |
2 | WANG J X, LI Y Z, LIU X D, et al. Recent active thermal management technologies for the development of energy-optimized aerospace vehicles in China[J]. Chinese Journal of Aeronautics, 2021, 34(2): 1-27. |
3 | 屠敏, 袁耿民, 薛飞, 等. 综合热管理在先进战斗机系统研制中的应用[J]. 航空学报, 2020, 41(6): 523629. |
TU M, YUAN G M, XUE F, et al. Application of integrated thermal management in development of advanced fighter system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523629 (in Chinese). | |
4 | KANDLIKAR S G, BAPAT A V. Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal[J]. Heat Transfer Engineering, 2007, 28(11): 911-923. |
5 | CHENG W L, ZHANG W W, CHEN H, et al. Spray cooling and flash evaporation cooling: The current development and application[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 614-628. |
6 | SMAKULSKI P, PIETROWICZ S. A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques[J]. Applied Thermal Engineering, 2016, 104: 636-646. |
7 | WANG J X, GUO W, XIONG K, et al. Review of aerospace-oriented spray cooling technology[J]. Progress in Aerospace Sciences, 2020, 116: 100635. |
8 | 鲍俊, 王瑜, 牛潜, 等. 喷雾液滴撞击液膜影响参数及流动机理分析[J]. 航空学报, 2021, 42(S1): 726360. |
BAO J, WANG Y, NIU Q, et al. Influencing parameters and film flow mechanism of spray droplet impacting liquid film[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726360 (in Chinese). | |
9 | XU X J, WANG Y, JIANG Y L, et al. Recent advances in closed loop spray cooling and its application in airborne systems[J].Journal of Thermal Science, 2021, 30(1): 32-50. |
10 | 李凯翔, 代承霖, 张飞, 等. 大型客机驾驶舱/客舱振动舒适性评估[J]. 航空学报, 2022, 43(6): 525945. |
LI K X, DAI C L, ZHANG F, et al. Evaluation of vibration caused discomfort in passenger aircraft cabin[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525945 (in Chinese). | |
11 | SANTOSH K M, ARUN A, CHANDRA H. Application of vibration on heat transfer-a review[J]. I-manager’s Journal on Future Engineering and Technology, 2019, 15(1): 72-81. |
12 | JIANG S L, LI J, XIAO R, et al. Novel spray cooling plate for thermal control of active phased array radar[J]. IOP Conference Series: Materials Science and Engineering, 2019, 677(2): 022093. |
13 | SARMADIAN A, DUNNE J F, LONG C A, et al. Heat flux correlation models for spray evaporative cooling of vibrating surfaces in the nucleate boiling region[J]. International Journal of Heat and Mass Transfer, 2020, 160: 120159. |
14 | SARMADIAN A, DUNNE J F, JOSE J T, et al. Correlation models of critical heat flux and associated temperature for spray evaporative cooling of vibrating surfaces[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121735. |
15 | MOREIRA A L N, MOITA A S, PAN?O M R. Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful?[J]. Progress in Energy and Combustion Science, 2010, 36(5): 554-580. |
16 | 杨宝海. 喷雾冷却中液滴撞击固体壁面的动态特性及传热特性研究[D]. 重庆: 重庆大学, 2013. |
YANG B H. The study of the dynamic and heat transfer characteristics for a droplet impacting on solid surfaces in spray cooling[D]. Chongqing: Chongqing University, 2013 (in Chinese). | |
17 | 胡定华, 刘诗雨. Al2O3纳米流体液滴撞击壁面的动力学行为数值研究[J]. 浙江大学学报(工学版), 2021, 55(5): 991-998. |
HU D H, LIU S Y. Numerical study on dynamic behaviors of Al2O3 nanofluid droplet impacting on solid wall[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(5): 991-998 (in Chinese). | |
18 | SHAHMOHAMMADI BENI M, ZHAO J Y, YU K N. Investigation of droplet behaviors for spray cooling using level set method[J]. Annals of Nuclear Energy, 2018, 113: 162-170. |
19 | LEE H J, KIM H Y. Control of drop rebound with solid target motion[J]. Physics of Fluids, 2004, 16(10): 3715-3719. |
20 | WEISENSEE P B, MA J C, SHIN Y H, et al. Droplet impact on vibrating superhydrophobic surfaces[J]. Physical Review Fluids, 2017, 2(10): 103601. |
21 | RAMAN K A, JAIMAN R K, SUI Y, et al. Rebound suppression of a droplet impacting on an oscillating horizontal surface[J]. Physical Review E, 2016, 94(2): 023108. |
22 | WANG W, JI C, LIN F Y, et al. Water drops bouncing off vertically vibrating textured surfaces[J]. Journal of Fluid Mechanics, 2019, 876: 1041-1051. |
23 | MORADI M, RAHIMIAN M H, CHINI S F. Numerical simulation of droplet impact on vibrating low-adhesion surfaces[J]. Physics of Fluids, 2020, 32(6): 062110. |
24 | JOSE J T, DUNNE J F. Numerical simulation of single-droplet dynamics, vaporization, and heat transfer from impingement onto static and vibrating surfaces[J]. Fluids, 2020, 5(4): 188. |
25 | NG B T, HUNG Y M, TAN M K. Suppression of the Leidenfrost effect via low frequency vibrations[J]. Soft Matter, 2015, 11(4): 775-784. |
26 | KHABAKHPASHEVA T I, KOROBKIN A A. Splashing of liquid droplet on a vibrating substrate[J]. Physics of Fluids, 2020, 32(12): 122109. |
27 | CHANG T B, CHEN R H. Experimental investigation into deposition/splashing behavior of droplets impacting vibrating surface[J]. Advances in Mechanical Engineering, 2017, 9(11): 1-10. |
28 | ZHANG H X, ZHANG X W, YI X, et al. Dynamic behaviors of droplets impacting on ultrasonically vibrating surfaces[J]. Experimental Thermal and Fluid Science, 2020, 112: 110019. |
29 | BREITENBACH J, ROISMAN I V, TROPEA C. From drop impact physics to spray cooling models: A critical review[J]. Experiments in Fluids, 2018, 59(3): 55. |
30 | JUNG Y C, BHUSHAN B. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces[J]. Langmuir, 2009, 25(16): 9208-9218. |
31 | BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. |
32 | LI W, WANG J X, ZHU C L, et al. Numerical investigation of droplet impact on a solid superhydrophobic surface[J]. Physics of Fluids, 2021, 33(6): 063310. |
33 | WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
34 | 梁超, 王宏, 朱恂, 等. 液滴撞击不同浸润性壁面动态过程的数值模拟[J]. 化工学报, 2013, 64(8): 2745-2751. |
LIANG C, WANG H, ZHU X, et al. Numerical simulation of droplet impact on surfaces with different wettabilities[J]. CIESC Journal, 2013, 64(8): 2745-2751 (in Chinese). |
/
〈 |
|
〉 |