流体力学与飞行力学

两相流对固体火箭发动机塞式喷管性能的影响

  • 李泓瑾 ,
  • 李军伟 ,
  • 谢侃 ,
  • 李想 ,
  • 杨正 ,
  • 王宁飞
展开
  • 北京理工大学 宇航学院,北京  100081
.E-mail: xiekan@bit.edu.cn

收稿日期: 2022-08-03

  修回日期: 2022-08-23

  录用日期: 2022-10-18

  网络出版日期: 2022-10-26

Effect of two-phase flow on performance of plug nozzle in solid rocket motor

  • Hongjin LI ,
  • Junwei LI ,
  • Kan XIE ,
  • Xiang LI ,
  • Zheng YANG ,
  • Ningfei WANG
Expand
  • School of Astronautics,Beijing Institute of Technology,Beijing  100081,China
E-mail: xiekan@bit.edu.cn

Received date: 2022-08-03

  Revised date: 2022-08-23

  Accepted date: 2022-10-18

  Online published: 2022-10-26

摘要

针对固体火箭发动机中气固两相流对塞式喷管性能的影响,利用颗粒轨道模型法计算了环喉型塞式喷管两相流流场,辨识颗粒在流场中的运动轨迹,分析不同粒径颗粒对流场及推力性能的影响。结合传统钟形喷管,比较不同工况下塞式喷管与钟形喷管的推力性能,分析气固两相流对塞式喷管高度补偿特性的影响。结果表明:随着颗粒粒径的增大,颗粒会出现交错式的运动,增加了流场的复杂性;单个颗粒与该截断式塞锥只会发生一次碰撞,且粒径越大,碰撞位置越靠前;单一粒径颗粒带来的推力性能损失与颗粒粒径成正比,与工作压比成反比;真实工作条件下,相比于钟形喷管,气固两相流在设计工况对塞式喷管带来约3%更多的推力效率损失,推力效率最终趋于弱于钟型喷管2.7%,但塞式喷管在低压比工况仍具有可观的性能优势。

本文引用格式

李泓瑾 , 李军伟 , 谢侃 , 李想 , 杨正 , 王宁飞 . 两相流对固体火箭发动机塞式喷管性能的影响[J]. 航空学报, 2023 , 44(16) : 127890 -127890 . DOI: 10.7527/S1000-6893.2022.27890

Abstract

To study the effect of gas-solid two-phase flow on performance of the plug nozzle in solid rocket motor, the two-phase flow field of annular plug nozzle was calculated by particle track model, the movement track of particles in flow field was identified, the influence of different particle sizes on flow field and thrust performance of nozzle was analyzed. Combined with traditional bell nozzle, the thrust performance of plug nozzle and bell nozzle under different working conditions was compared, the influence of gas-solid two-phase flow on the height compensation characteristics of plug nozzle was analyzed. The results show that with the increase of particle size, the particles will appear staggered motion, which increases the complexity of the flow field. And there is only one collision between a single particle and the truncated plug, and the larger the particle size, the more advanced the collision position. The thrust performance loss caused by single particle size is proportional to particle size and inversely proportional to working pressure ratio. Under real working conditions, compared with bell nozzle, gas-solid two-phase flow brings about 3% more thrust efficiency loss to plug nozzle in the design condition, and thrust efficiency eventually tend to be weaker than the bell nozzle at 2.7%, but plug nozzle still has considerable performance advantage in low pressure ratio condition.

参考文献

1 王长辉, 刘宇. 塞式喷管在固体火箭发动机上的应用研究[J]. 固体火箭技术200528(1): 36-39, 56.
  WANG C H, LIU Y. Application study of plug nozzles for solid rocket motors[J]. Journal of Solid Rocket Technology200528(1): 36-39, 56 (in Chinese).
2 SCHNABEL M C, BROPHY C M. Pressure distribution and performance impacts of aerospike nozzles on rotating detonation engines[C]∥2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018.
3 ROMMEL T, HAGEMANN G, SCHLEY C A, et al. Plug nozzle flowfield analysis[J]. Journal of Propulsion and Power199713(5): 629-634.
4 刘亚洲, 李平, 杨建文. 液体火箭发动机喷管流动特性及高度补偿研究进展[J]. 推进技术202243(1): 14-33.
  LIU Y Z, LI P, YANG J W. Progress of flow characteristics and altitude compensation in liquid rocket engine nozzle[J]. Journal of Propulsion Technology202243(1): 14-33 (in Chinese).
5 CIEPLUCH C, KRULL H, STEFFEN F W. Preliminary investigation of performance of variable-throat extended-plug-type nozzles over wide range of nozzle pressure ratios: Technical Report Archive & Image Library[R]. Washington, D.C.: National Advisory Committee For Aeronautics, 1954.
6 RAO G V R. Analysis of a new concept rocket nozzle[M]∥Liquid rockets and propellants. Reston: AIAA, 1960: 669-682.
7 HALL C, PANOSSIAN H. X-33 attitude control using the XRS-2200 linear aerospike engine[C]∥35th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1999.
8 琚春光, 陈风雨, 王国辉. 高度补偿喷管发动机在运载火箭上的应用[J]. 导弹与航天运载技术2011315(5): 20-23.
  JU C G, CHEN F Y, WANG G H. Application of aerospike nozzle engine in launch vehicles[J]. Missiles and Space Vehicles2011315(5): 20-23 (in Chinese).
9 任军学, 肖建军, 刘宇,等. 塞式喷管对固体导弹性能的增益[C]∥中国宇航学会运载系统专业委员会学术交流会. 北京:中国宇航学会, 2005: 213-219.
  REN J X, XIAO J J, LIU Y, et al. Gain of plug nozzles on solid missile performance[C]∥Academic Exchange of Transport System Committee. Beijing: Chinese Society of Astronautics, 2005: 213-219 (in Chinese).
10 任军学, 刘宇, 覃粒子. 环簇式塞式喷管在固体火箭发动机上应用探讨[J]. 固体火箭技术200528(3): 184-187.
  REN J X, LIU Y, QIN L Z. Application of annular clustered plug nozzle to solid rocket motor[J]. Journal of Solid Rocket Technology200528(3): 184-187 (in Chinese).
11 谢侃, 刘宇, 任军学, 等. 两相流环缝塞式喷管设计方法[J]. 航空学报200728(6): 1339-1344.
  XIE K, LIU Y, REN J X, et al. Design methods of two-phase axial plug nozzle[J]. Acta Aeronautica et Astronautica Sinica200728(6): 1339-1344 (in Chinese).
12 任军学, 刘宇, 谢侃. 固体火箭发动机塞式喷管两相流场与性能分析[J]. 航空学报200728(增): 23-27.
  REN J X, LIU Y, XIE K. Two-phase flow field in plug nozzle of solid rocket motor and its performance analysis[J]. Acta Aeronautica et Astronautica Sinica200728(Sup.): 23-27 (in Chinese).
13 琚春光, 刘宇, 王长辉, 等. 塞式喷管二次喷射推力矢量控制研究[J]. 推进技术200930(1): 67-71.
  JU C G, LIU Y, WANG C H, et al. A study for thrust vector control of aerospike nozzle based on second injection[J]. Journal of Propulsion Technology200930(1): 67-71 (in Chinese).
14 陈涛, 刘宇, 程诚, 等. 固体火箭发动机塞式喷管结构型式与性能分析[J]. 固体火箭技术201134(2):156-160.
  CHEN T, LIU Y, CHENG C, et al. Structure type and performance analysis of aerospike nozzle of solid rocket motor[J]. Journal of Solid Rocket Technology201134(2):156-160 (in Chinese).
15 李修明, 王一白, 童悦, 等. 固体火箭发动机推力可调塞式喷管数值模拟与冷流试验[J]. 上海航天201936(): 29-34.
  LI X M, WANG Y B, TONG Y, et al. Numerical simulation and cold-flow test of adjustable thrust solid plug nozzle[J]. Aerospace Shanghai201936(S1): 29-34 (in Chinese).
16 CAUBET P, BERDOYES M. Innovative ArianeGroup controllable solid propulsion technologies[C]∥AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019.
17 HA D S, KIM J J, KIM H J. Dynamic characteristics of the aerospike-shaped pintle nozzle for variable thrust[C]∥AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019.
18 ANGELINO G. Approximate method for plug nozzle design[J]. AIAA Journal19642(10): 1834-1835.
19 淡林鹏, 张振鹏, 赵永忠, 等. 长尾喷管中粒子运动轨迹的数值模拟[J]. 航空动力学报200318(2): 258-263.
  DAN L P, ZHANG Z P, ZHAO Y Z, et al. Numerical study of particle trajectories in a nozzle with a tail pipe[J]. Journal of Aerospace Power200318(2): 258-263 (in Chinese).
20 GURRIS M, KUZMIN D, TUREK S. Finite element simulation of compressible particle-laden gas flows[J]. Journal of Computational and Applied Mathematics2010233(12): 3121-3129.
21 李平, 肖良华, 何卫锋, 等. 收缩-扩张喷管内气固两相流运动规律研究[J]. 工程力学201835(12): 240-247.
  LI P, XIAO L H, HE W F, et al. Research on movement law of gas-solid two-phase flow in convergent-divergent nozzle[J]. Engineering Mechanics201835(12): 240-247 (in Chinese).
22 穆旭. 固体火箭发动机喷管两相流仿真与型面优化研究[D]. 西安: 航天动力技术研究院, 2021.
  MU X. Study on simulation of two-phase flow and profile optimization of solid rocket motor nozzle[D]. Xi'an: Academy of Aerospace Solid Propulsion Technology, 2021 (in Chinese).
23 BUI T, MURRAY J, ROGERS C, et al. Flight research of an aerospike nozzle using high power solid rockets[C]∥41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2005.
24 张宏安, 叶定友. 固体火箭发动机喷管凝相粒子尺寸分布研究[C]∥第五届海内外华人航天科技研讨会. 西安: 中国宇航学会, 2004: 407-412.
  ZHANG H A, YE D Y. Study on particle size distribution of solid rocket motor nozzle[C]∥The 5th Symposium on Space Science and Technology for Chinese at Home and Abroad. Xi’an: Chinese Society of Astronautics, 2004: 407-412 (in Chinese).
文章导航

/