流体力学与飞行力学

高超声速平板边界层中波纹粗糙壁峰值热流的变化规律及预测

  • 孔祥志 ,
  • 韩宇峰
展开
  • 天津大学 高速空气动力学研究室,天津  300072
.E-mail: hyf@tju.edu.cn

收稿日期: 2022-07-06

  修回日期: 2022-08-09

  录用日期: 2022-10-18

  网络出版日期: 2022-10-26

Patterns and prediction of surface peak heat flux in hypersonic flat plate boundary layer over wave wall

  • Xiangzhi KONG ,
  • Yufeng HAN
Expand
  • Laboratory for High-Speed Aerodynamics,Tianjin University,Tianjin  300072,China
E-mail: hyf@tju.edu.cn

Received date: 2022-07-06

  Revised date: 2022-08-09

  Accepted date: 2022-10-18

  Online published: 2022-10-26

摘要

新型飞行器表面存在微烧蚀现象,会导致壁面局部热流增大采用粗糙高度小于600 μm的波纹型粗糙来模拟微烧蚀表面。通过直接求解Navier-Stokes方程,计算了均布波纹粗糙的壁面峰值热流的变化规律。结果发现,粗糙度引起的峰值热流与流向位置的0.5次方成反比;壁面峰值热流与粗糙高度成正比,并随宽度增大而减小,受高度的影响大于宽度。同时,马赫数和壁温对壁面峰值热流影响结果表明,相对峰值热流增量与马赫数成反比、与壁温成反比。在此基础上,基于光滑平板热流理论解,给出了粗糙壁峰值热流预测公式。详细的工况验证表明,该公式在马赫数4~10和壁温300~800 K范围内能够准确预测粗糙壁面峰值热流,误差不超过8%。对于其他壁面形式,如椭圆型和分散正弦型,该公式也具有一定的适用性。

本文引用格式

孔祥志 , 韩宇峰 . 高超声速平板边界层中波纹粗糙壁峰值热流的变化规律及预测[J]. 航空学报, 2023 , 44(12) : 127769 -127769 . DOI: 10.7527/S1000-6893.2022.27769

Abstract

Micro ablation on the surface of new-type vehicles will lead to increased local heat flux on the wall surface. This study uses corrugated roughness with roughness height smaller than 600 μm to simulate micro ablative surfaces, and calculates the variation law of the peak heat flux on the wall surface with uniform corrugated roughness by directly solving the Navier-Stokes equation. It is found that the surface peak heat flux caused by roughness is inversely proportional to the 0.5 times of the flow position, the surface peak heat flux is proportional to the roughness height and decreases with increasing width, and is more influenced by the height than the width. Meanwhile, the influence results of the Mach number and wall temperature on the surface peak heat flux at the wall show that the relative surface peak heat flux increment is inversely proportional to both the Mach number and wall temperature. Further, based on the smooth flat plate heat flux theory solution, we provide the surface peak heat flux prediction formula. Detailed verification of the working conditions reveals that the formula can accurately predict the surface peak heat flux in the range of Mach number 4-10 and wall temperature 300-800 K with an error of no more than 8%. For other wall forms, such as elliptical and dispersive sine types, the formula can also produce an accurate prediction.

参考文献

1 COLEBROOK C F, WHITE C M. Experiments with fluid friction in roughened pipes [J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences1937161(906): 367-381.
2 SCHLICHTING H. Experimentelle untersuchungen zum rauhigkeitsproblem [J]. Ingenieur-Archiv19367(1): 1-34.
3 NIKURADSE J. Laws of flow in rough pipes: Technical Memorandum 1292[R]. Washington: NACA, 1950.
4 SIGAL A, DANBERG J E. New correlation of rough-ness density effect on the turbulent boundary layer [J]. AIAA Journal199028(3): 554-556.
5 NAPOLI E, ARMENIO V, DE MARCHIS M. The effect of the slope of irregularly distributed roughness elements on turbulent wall-bounded flows [J]. Journal of Fluid Mechanics2008613: 385-94.73.
6 安复兴, 李磊, 苏伟, 等. 高超声速飞行器气动设计中的若干关键问题[J]. 中国科学 (物理学 力学 天文学)202151(10): 2-21
  AN F X, LI L, SU W, LIU W L, DONG C. Several key issues in the aerodynamic design of hypersonic vehicles [J]. Science in China: Physics Mechanics Astronomy202151(10): 2-21 (in Chinese).
7 BERTRAM M, WEINSTEIN L, CARY JR A, et al. Heat transfer to wavy wall in hypersonic flow [J]. AIAA Journal19675(10): 1760-1767.
8 JAECK C L. Analysis of pressure and heat transfer tests on surface roughness elements with laminar and turbulent boundary layers [M]. Washington D.C.: National Aeronautics and Space Administration, 1966.
9 ABBETT M J, ANDERSON A D, COOPER L, et al. Passive Nosetip Technology (PANT) Program. Volume 20. Investigation of flow phenomena over reentry vehicle nosetips[R]. 1975.
10 DIRLING, JR R, SWAIN C, STOKES T. The effect of transition and boundary layer development on hypersonic reentry shape change[C]∥10th Thermophysics Conference. 1975: 673.
11 PHINNEY R E. Mechanism for heat-transfer to a rough blunt body [J]. Letters in Heat and Mass Transfer19741(2): 181-186.
12 GRABOW R, WHITE C. Surface roughness effects nosetip ablation characteristics [J]. AIAA Journal197513(5): 605-609.
13 NESTLER D. Compressible turbulent boundary-layer heat transfer to rough surfaces [J]. AIAA Journal19719(9): 1799-1803.
14 SEIDMAN M. Rough wall heat transfer in a compressible turbulent boundary layer[C]∥16th Aerospace Sciences Meeting. 1978: 163.
15 NESTLER D. The effects of surface discontinuities on convective hear transfer in hypersonic flow[C]∥20th Thermophysics Conference. 1985: 971.
16 POLAK A, WERLE M, VATSA V, et al. Numerical study of separated laminar boundary layers over multiple sine-wave protuberances [J]. Journal of Spacecraft and Rockets197613(3): 168-173.
17 NOVIKOV A, EGOROV I, FEDOROV A. Direct numerical simulation of supersonic boundary layer stabilization using grooved wavy surface[C]∥48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010: 1245.
18 李俊红, 张亮, 俞继军, 等. 高超声速可压缩流中粗糙壁热流研究 [J]. 计算物理201734(2): 165-174.
  LI J H, ZHANG L, YU J J, et al. Study on rough wall heat flow in hypersonic compressible flow [J]. Computational Physics201734(2): 165-174 (in Chinese).
19 李玉川, 鲍麟. 波状粗糙壁模型流动的壁面热流和阻力关联关系的数值研究[J].中国科学院大学学报201936(6):736-744.
  LI Y C, BAO L. Numerical study on the relationship between wall heat flow and resistance in wavy rough wall model flow[J]. Journal of University of Chinese Academy of Sciences201936(06):736-744 (in Chinese).
20 KUMAR C, REDDY K. Hypersonic interference heating on flat plate with short three-dimensional protuberances [J]. AIAA Journal201452(4): 747-756.
21 ESTRUCH-SAMPER D. Reattachment heating up-stream of short compression ramps in hypersonic flow [J]. Experiments in Fluids201657(5): 1-17.
22 AVALLONE F, RAGNI D, SCHRIJER F F, et al. Study of a supercritical roughness element in a hypersonic laminar boundary layer [J]. AIAA Journal201654(6): 1892-1900.
23 THAKKAR M, BUSSE A, SANDHAM N. Surface correlations of hydrodynamic drag for transitionally rough engineering surfaces [J]. Journal of Turbulence201718(2): 138-169.
24 MATHAUSER E E. Research, design considerations, and technological problems of structures for winged aerospace vehicles [J]. NASA Special Publication196228: 13.
25 ZHAO L, DONG M, YANG Y. Harmonic linearized Navier-Stokes equation on describing the effect of surface roughness on hypersonic boundary-layer transition[J]. Physics of Fluids201931(3): 034108.
26 程晓丽, 艾邦成, 王强. 基于分子平均自由程的热流计算壁面网格准则[J]. 力学学报201042(06):1083-1089.
  CHENG X L, AI B C, WANG Q. Wall mesh criterion for heat flow calculation based on molecular mean free path[J]. Acta Mechanica Sinica201042(6):1083-1089 (in Chinese).
27 马崇立, 刘景源. 网格对高超声速钝头体表面热流数值模拟结果的影响[J]. 航空学报202344(5): 126710.
  MA C L, LIU J Y. Effect of Grid Strategy on Numerical Simulation Results of Aerothermal Heating Loads over Hypersonic Blunt Bodies[J]. Acta Aeronautica et Astronautica Sinica202344(5): 126710 (in Chinese).
28 ANDERSON J D. Hypersonic and high temperature gas dynamics[M]. Reston: AIAA, 2000: 243-247.
文章导航

/