流体力学与飞行力学

发动机泵后模拟供应系统频率特性的液流激励试验

  • 董蒙 ,
  • 谭永华 ,
  • 何闯 ,
  • 邢理想 ,
  • 赵瑞国
展开
  • 1.西安航天动力研究所 液体火箭发动机技术重点实验室,西安  710100
    2.航天推进技术研究院,西安  710100
.E-mail: 360640173@qq.com

收稿日期: 2022-05-12

  修回日期: 2022-06-27

  录用日期: 2022-10-13

  网络出版日期: 2022-10-26

基金资助

液体火箭发动机技术重点实验室基金(6142704210102)

Hydraulic excitation experiment on frequency characteristic of simulated feed system after pump in a rocket engine

  • Meng DONG ,
  • Yonghua TAN ,
  • Chuang HE ,
  • Lixiang XING ,
  • Ruiguo ZHAO
Expand
  • 1.Key Laboratory of Science and Technology on Liquid Rocket Engine,Xi’an Aerospace Propulsion Institute,Xi’an  710100,China
    2.Academy of Aerospace Propulsion Technology,Xi’an  710100,China
E-mail: 360640173@qq.com

Received date: 2022-05-12

  Revised date: 2022-06-27

  Accepted date: 2022-10-13

  Online published: 2022-10-26

Supported by

Foundation of Key Laboratory of Science and Technology on Liquid Rocket Engine(6142704210102)

摘要

为掌握液体火箭发动机泵后供应系统的频率特性,进一步认识发动机研制过程中的稳定性问题,开展了模拟真实泵后结构的液流激励系统频响试验研究。利用声学闭端装置和转盘式激励器分别真实模拟了泵的硬声场反射边界和燃气发生器燃烧形成的脉动信号源,扫频获得了该液流激励系统在受迫振荡下的频率响应特性。研究发现:在30~230 Hz的研究频率范围内,激励源处可产生分频幅值为0.3~1.07 MPa的人工脉动压力信号;线性与阶梯扫频在识别频率方面并无差别,但在100 Hz以上线性扫频识别幅值比阶梯扫频平台处的真实幅值小;声学闭端装置具有明显的频率选择性,在安装声学闭端装置的试验系统中,闭端效果较好的频率段在研究频率范围中的占比为82.5%,闭端装置使该频率段范围增加了67%,试验系统呈现出良好的闭端边界;随着稳态流量增加,脉动幅值增加,且主路更明显地表现出系统整体的多阶谐振频率特征,前三阶分别为36、65、101 Hz;在以大阻抗元件分割的具有强边界的局部子系统内,重点表现出该边界下频率特性;对于纯受迫激励系统,沿激励传播方向相位依次滞后,在谐振点附近相位差产生较大变化,脉动压力在节流圈以及带长支路的三通前后会形成较大相位差。

本文引用格式

董蒙 , 谭永华 , 何闯 , 邢理想 , 赵瑞国 . 发动机泵后模拟供应系统频率特性的液流激励试验[J]. 航空学报, 2023 , 44(9) : 127419 -127419 . DOI: 10.7527/S1000-6893.2022.27419

Abstract

To master the frequency characteristics of the feed system after pump in a liquid rocket engine and further understand the stability problems in the development of rocket engines, a test study is carried out on the frequency response of the hydraulic excitation system of the simulated structure after pump. The hard acoustic reflection boundary of the pump and the pulsating signal source formed by combustion of the gas generator are simulated by using the acoustic closed-end device and the turntable exciter, respectively, and the frequency response characteristics of the hydraulic excitation system under forced oscillation are obtained by sweeping the frequency. The results show that in the frequency range of 30-230 Hz, the excitation source can generate artificial pressure pulsation signals with a frequency division amplitude of 0.3-1.07 MPa. There is no difference between linear and stepped frequency sweeps in identifying frequencies, but the identification amplitude of linear frequency sweeps above 100 Hz is smaller than the real amplitude at the stepped frequency sweep platform. The acoustic closed-end device has obvious frequency selectivity. In the test system where the acoustic closed-end device is installed, the frequency band with better closed-end effect accounts for 82.5% of the research frequency range and the closed-end device makes this frequency range increase by 67%, demonstrating a relatively ideal closed-end boundary of the test system. With the increase of steady-state flow, the pulsation amplitude increases, and the main circuit shows more obviously the multi-order resonance frequency characteristics of the whole system, where the first three frequencies are 36, 65 and 101 Hz. In the local subsystem with strong boundary divided by large impedance components, the frequency characteristics under this boundary are highlighted. For a purely forced excitation system, the phase lags along the excitation propagation direction in turn; the phase difference changes greatly near the resonance point, and the pulsating pressure forms a large phase difference before and after the throttle plate and the tee with a long branch.

参考文献

1 CULICK F E C. Unsteady motions in combustion chambers for propulsion systems: RTO-AG-AVT-039[R]. 2006.
2 LEONARDI M, DI MATTEO F, STEELANT J, et al. Nonlinear analysis of low-frequency combustion instabilities in liquid rocket engines[M]∥Progress in Propulsion Physics–Volume 11. Les Ulis: EDP Sciences, 2019: 295-316.
3 陈文, 邢理想, 徐浩海, 等. 深度节流补燃循环发动机系统稳定性研究[J]. 火箭推进202046(3): 41-48.
  CHEN W, XING L X, XU H H, et al. Study on system stability of deep-throttling staged combustion cycled engine[J]. Journal of Rocket Propulsion202046(3): 41-48 (in Chinese).
4 刘上, 刘红军, 陈建华, 等. 富氧燃气发生器-供应系统耦合稳定性研究[J]. 推进技术201334(11): 1448-1458.
  LIU S, LIU H J, CHEN J H, et al. Investigation on oxidizer-rich preburner feed system coupled stability[J]. Journal of Propulsion Technology201334(11): 1448-1458 (in Chinese).
5 CASIANO M J. Extensions to the time lag models for practical application to rocket engine stability design[D]. State College: The Pennsylvania State University, 2010: 120-127.
6 KLEM M, PIEPER J, WALKER R. Combustor design and analysis using the ROCket Combustor Interactive Design (ROCCID) methodology: AIAA-1990-2240[R]. Reston: AIAA, 1990.
7 MUSS J, NGUYEN T V, JOHNSON C W. User’s manual for rocket combustor interactive design (ROCCID) and analysis computer program. Volume 1: User’s manual: NASA-CR-187109[R].Washington,D.C.: NASA, 1991.
8 何闯, 邢理想, 徐浩海. 气驱预压涡轮泵对发动机液氧路频率特性影响[J]. 火箭推进202147(1): 76-82.
  HE C, XING L X, XU H H. Influence of gas drive pre-pressurized turbo-pump on frequency characteristics of liquid oxygen system in rocket engine[J]. Journal of Rocket Propulsion202147(1): 76-82 (in Chinese).
9 张淼, 李斌, 邢理想. 基于燃气射流冷凝的氧路系统频率特性研究[J]. 航空学报202041(2): 123393.
  ZHANG M, LI B, XING L X. Study on frequency characteristics of oxygen feed system based on gas jet and condensation[J]. Acta Aeronautica et Astronautica Sinica202041(2): 123393 (in Chinese).
10 李斌, 杜大华, 张贵田, 等. 液氧/煤油补燃发动机低频频率特性研究[J]. 航空动力学报200924(5): 1187-1191.
  LI B, DU D H, ZHANG G T, et al. Research on the low frequency characteristics of LOX/kerosene staged combustion cycle engine[J]. Journal of Aerospace Power200924(5): 1187-1191 (in Chinese).
11 BAZAROV V, LEE E, LINEBERRY D, et al. Pulsator designs for liquid rocket injector research: AIAA-2007-5156[R]. Reston: AIAA, 2007.
12 BALASUBRAMANYAM M, CHEN C P, BAZAROV V G. Numerical studies on frequency response to mass flow rate variations in a hydromechanical pulsator: AIAA-2009-4956[R]. Reston: AIAA, 2009.
13 CHUNG Y, KIM H, JEONG S, et al. Dynamic characteristics of open-type swirl injector with varying geometry[J]. Journal of Propulsion and Power201632(3): 583-591.
14 FU Q F, YANG L J, WANG X D. Theoretical and experimental study of the dynamics of a liquid swirl injector[J]. Journal of Propulsion and Power201026(1): 94-101.
15 FU Q F, YANG L J, QU Y Y, et al. Geometrical effects on the fluid dynamics of an open-end swirl injector[J]. Journal of Propulsion and Power201127(5): 929-936.
16 薛帅杰, 刘红军, 洪流, 等. 厚液膜敞口型离心喷嘴动力学特性试验[J]. 航空学报201839(12): 122534.
  XUE S J, LIU H J, HONG L, et al. Experimental on dynamic characteristics of an open-end swirl injector with thick liquid film[J]. Acta Aeronautica et Astronautica Sinica201839(12): 122534 (in Chinese).
17 李佳楠, 雷凡培, 杨岸龙, 等. 强迫扰动下的射流撞击雾化特性[J]. 航空学报202041(12): 124027.
  LI J N, LEI F P, YANG A L, et al. Atomization characteristics of impinging liquid jets coupled with forced perturbation[J]. Acta Aeronautica et Astronautica Sinica202041(12): 124027 (in Chinese).
18 刘上, 张兴军, 程晓辉, 等. 火箭发动机泵后供应系统水力激振试验[J]. 航空动力学报201833(11): 2635-2643.
  LIU S, ZHANG X J, CHENG X H, et al. Hydraulic vibration experiment on a rocket engine feed system after pump[J]. Journal of Aerospace Power201833(11): 2635-2643 (in Chinese).
19 刘上, 赵瑞国, 付幼明, 等. 宽频高幅值水力激振信号的产生与控制[J]. 航空动力学报201833(10): 2492-2499.
  LIU S, ZHAO R G, FU Y M, et al. Creation and control of hydraulic vibration signal with wide frequency range and high amplitude[J]. Journal of Aerospace Power201833(10): 2492-2499 (in Chinese).
20 刘上, 张兴军, 程晓辉, 等. 发动机泵后管路-汽蚀管系统水力激振试验[J]. 航空动力学报201833(12): 3057-3064.
  LIU S, ZHANG X J, CHENG X H, et al. Experiment for hydraulic vibration on rocket engine feed pipe-Venturi tube system after pump[J]. Journal of Aerospace Power201833(12): 3057-3064 (in Chinese).
21 刘上, 张兴军, 程晓辉, 等. 一种液流系统声学闭端入口边界条件模拟装置: CN108225726A[P]. 2018-06-29.
  LIU S, ZHANG X J, CHENG X H, et al. Simulating device for acoustic closed end inlet boundary conditions of fluid flow system: CN108225726A[P]. 2018-06-29 (in Chinese).
22 李斌, 张小平, 马冬英. 我国新一代载人火箭液氧煤油发动机[J]. 载人航天201420(5): 427-431, 442.
  LI B, ZHANG X P, MA D Y. The LOX/kerosene rocket engine for Chinese new-generation manned launch vehicle[J]. Manned Spaceflight201420(5): 427-431, 442 (in Chinese).
23 刘上, 刘红军, 徐浩海, 等. 流量调节器-管路系统频率特性及稳定性[J]. 推进技术201233(4): 631-638.
  LIU S, LIU H J, XU H H, et al. Frequency characteristics and stability of the flow regulator-pipe system[J]. Journal of Propulsion Technology201233(4): 631-638 (in Chinese).
文章导航

/