一种无人机⁃无人车编队系统容错控制方法
收稿日期: 2022-03-30
修回日期: 2022-05-14
录用日期: 2022-10-08
网络出版日期: 2022-10-26
基金资助
国家自然科学基金(62020106003);江苏省自然科学基金(BK20211566);教育部-科技部高等学校学科创新引智基地(B20007);机械结构力学与控制国家重点实验室 (南京航空航天大学)自主研究课题(MCMS-I-0121G03);航空科学基金(20200007018001)
A fault⁃tolerant control scheme for UAVs-UGVs formation systems
Received date: 2022-03-30
Revised date: 2022-05-14
Accepted date: 2022-10-08
Online published: 2022-10-26
Supported by
National Natural Science Foundation of China(62020106003);Natural Science Foundation of Jiangsu Province of China(BK20211566);Programme of Introducing Talents of Discipline to Universities of China(B20007);Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and Astronautics)(MCMS-I-0121G03);Aeronautical Science Foundation of China(20200007018001)
针对多无人机(UAVs)-多无人车(UGVs)编队控制系统通信链路加性故障问题,提出了一种基于分布式自适应观测器的容错编队控制算法。对四旋翼无人机控制系统和两轮驱动式无人车控制系统进行模型转换,并构造多无人机-多无人车编队控制系统数学模型;基于“虚拟领导者-跟随者”拓扑结构,利用邻接智能体的局部信息设计分布式自适应观测器,实现在通信链路故障下对虚拟领导者状态的观测;基于反步法设计多无人机-多无人车编队控制系统自适应容错编队控制器保证系统的编队跟踪性能。最后,在由3架四旋翼无人机和3辆两轮驱动式无人车组成的编队系统中进行仿真,结果验证了所设计自适应观测器和控制器的有效性。
关键词: 异构多智能体系统; 多无人机-多无人车编队系统; 通信链路加性故障; 容错编队跟踪; 自适应控制
马亚杰 , 王娟 , 姜斌 , 龚建业 . 一种无人机⁃无人车编队系统容错控制方法[J]. 航空学报, 2023 , 44(8) : 327216 -327216 . DOI: 10.7527/S1000-6893.2022.27216
To compensate for the problem of communication link additive faults of Unmanned Aerial Vehicles (UAVs)-Unmanned Ground Vehicles (UGVs) formation system, a fault-tolerant formation control algorithm is proposed based on distributed adaptive observers. The models of quad-rotor UAV and two-wheeled mobile robot control systems are transformed, and the model for the UAVs-UGVs formation system is further constructed. Based on the "virtual leader-followers" topology, distributed adaptive observers are designed by using the local information of adjacent agents to realize the observation of virtual leader's states with communication link additive faults. The adaptive fault-tolerant formation controllers of UAVs-UGVs system are designed based on the backstepping method. Finally, the effectiveness of the designed observers and controllers is verified by simulation of the formation system composed of three quad-rotor UAVs and three two-wheeled mobile robots.
1 | TANNER H G, JADBABAIE A, PAPPAS G J. Stable flocking of mobile agents, Part I: Fixed topology[C]∥ 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475). Piscataway: IEEE Press, 2004: 2010-2015. |
2 | ZHOU N, CHENG X D, XIA Y Q, et al. Fully adaptive-gain-based intelligent failure-tolerant control for spacecraft attitude stabilization under actuator saturation[J]. IEEE Transactions on Cybernetics, 2022, 52(1): 344-356. |
3 | 陈严波, 黄金龙, 汪志军, 等. 基于有向图的蜂群无人机故障影响[J]. 航空学报, 2020, 41(S2): 724287. |
CHEN Y B, HUANG J L, WANG Z J, et al. Influences of drone swarm failure based on directed graph[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724287 (in Chinese). | |
4 | CHEN H T, YI H, JIANG B, et al. Data-driven detection of hot spots in photovoltaic energy systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(8): 1731-1738. |
5 | LI F, DING Y S, ZHOU M C, et al. An affection-based dynamic leader selection model for formation control in multirobot systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(7): 1217-1228. |
6 | 张普, 薛惠锋, 高山. 基于分布式自适应的多智能体容错一致性控制[J]. 航空学报, 2020, 41(3): 323539. |
ZHANG P, XUE H F, GAO S. Distributed adaptive fault-tolerance consensus control for multi-agent system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 323539 (in Chinese). | |
7 | ZUO Z Q, ZHANG J, WANG Y J. Adaptive fault-tolerant tracking control for linear and lipschitz nonlinear multi-agent systems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3923-3931. |
8 | GE X H, HAN Q L, YANG F W. Event-based set-membership leader-following consensus of networked multi-agent systems subject to limited communication resources and unknown-but-bounded noise[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 5045-5054. |
9 | HOU W Y, FU M Y, ZHANG H S, et al. Consensus conditions for general second-order multi-agent systems with communication delay[J]. Automatica, 2017, 75: 293-298. |
10 | LI X L, WEN C Y, CHEN C, et al. Adaptive resilient secondary control for microgrids with communication faults[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8493-8503. |
11 | YU L Y, YE D, SUN Z W. Finite-time resilient attitude coordination control for multiple rigid spacecraft with communication link faults[J]. Aerospace Science and Technology, 2021, 111: 106560. |
12 | 郜晨, 何潇. 执行器饱和的多智能体一致性控制[J]. 航空学报, 2020, 41(S1): 110-118. |
GAO C, HE X. Consensus control for multi-agent systems subject to actuator saturations[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 110-118 (in Chinese). | |
13 | 姜斌, 张柯, 杨浩, 等. 卫星姿态控制系统容错控制综述[J]. 航空学报, 2021, 42(11): 524662. |
JIANG B, ZHANG K, YANG H, et al. Fault-tolerant control of satellite attitude control systems: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524662 (in Chinese). | |
14 | ZHANG K, JIANG B, SHI P. Adjustable parameter-based distributed fault estimation observer design for multiagent systems with directed graphs[J]. IEEE Transactions on Cybernetics, 2017, 47(2): 306-314. |
15 | 闫实, 吴修振, 王帅磊, 等. 有向切换拓扑下非线性多智能体系统的一致性控制[J]. 航空学报, 2020, 41(S2): 724295. |
YAN S, WU X Z, WANG S L, et al. Consensus of nonlinear multi-agent systems with directed switching topologies[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724295 (in Chinese). | |
16 | ZHENG D H, ZHANG H B, ZHANG J A, et al Consensus of multi-agent systems with faults and mismatches under switched topologies using a delta operator method[J]. Neurocomputing, 2018, 315: 198-209. |
17 | QIN J H, GAO H J, YU C B. On discrete-time convergence for general linear multi-agent systems under dynamic topology[J]. IEEE Transactions on Automatic Control, 2014, 59(4): 1054-1059. |
18 | 曹伟, 孙明. 离散时变多智能体系统有限时间一致性迭代学习控制[J]. 控制与决策, 2019, 34(4): 891-896. |
CAO W, SUN M. Finite-time consensus iterative learning control of discrete time-varying multi-agent systems[J]. Control and Decision, 2019, 34(4): 891-896 (in Chinese). | |
19 | YAGHMAIE F A, LEWIS F L, SU R. Output regulation of linear heterogeneous multi-agent systems via output and state feedback[J]. Automatica, 2016, 67: 157-164. |
20 | 田磊, 赵启伦, 董希旺, 等. 异构多智能体系统分组输出时变编队跟踪控制[J]. 航空学报, 2020, 41(7): 323727. |
TIAN L, ZHAO Q L, DONG X W, et al. Time-varying output group formation tracking for heterogeneous multi-agent systems[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 323727 (in Chinese). | |
21 | HAN J, ZHANG H G, JIANG H, et al. H∞ consensus for linear heterogeneous multi-agent systems with state and output feedback control[J]. Neurocomputing, 2018, 275: 2635-2644. |
22 | REN Y, ZHANG K, JIANG B, et al. Distributed fault-tolerant time-varying formation control of heterogeneous multi-agent systems[J]. International Journal of Robust and Nonlinear Control, 2022, 32(5): 2864-2882. |
23 | RAHIMI R, ABDOLLAHI F, NAQSHI K. Time-varying formation control of a collaborative heterogeneous multi agent system[J]. Robotics and Autonomous Systems, 2014, 62(12): 1799-1805. |
24 | LI Z K, WEN G H, DUAN Z S, et al. Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs[J]. IEEE Transactions on Automatic Control, 2015, 60(4): 1152-1157. |
25 | CHEN C, XIE K, LEWIS F L, et al. Adaptive synchronization of multi-agent systems with resilience to communication link faults[J]. Automatica, 2020, 111: 108636. |
26 | CAI H, LEWIS F L, HU G Q, et al. The adaptive distributed observer approach to the cooperative output regulation of linear multi-agent systems[J]. Automatica, 2017, 75: 299-305. |
/
〈 |
|
〉 |