综述

航空发动机多电分布式控制系统故障诊断与容错关键技术综述

  • 赵万里 ,
  • 郭迎清 ,
  • 徐柯杰 ,
  • 王灿森 ,
  • 应豪杰 ,
  • 陶欣昕
展开
  • 西北工业大学 动力与能源学院,西安  710129
.E-mail: yqguo@nwpu.edu.cn

收稿日期: 2022-05-25

  修回日期: 2022-07-11

  录用日期: 2022-09-29

  网络出版日期: 2022-10-14

基金资助

国家科技重大专项(J2019-V-0003-0094)

Review of key technologies for fault diagnosis and accommodation for multi⁃electric distributed engine control system

  • Wanli ZHAO ,
  • Yingqing GUO ,
  • Kejie XU ,
  • Cansen WANG ,
  • Haojie YING ,
  • Xinxin TAO
Expand
  • School of Power and Energy,Northwestern Polytechnical University,Xi’an  710129,China
E-mail: yqguo@nwpu.edu.cn

Received date: 2022-05-25

  Revised date: 2022-07-11

  Accepted date: 2022-09-29

  Online published: 2022-10-14

Supported by

National Science and Technology Major Project of China(J2019-V-0003-0094)

摘要

针对未来航空发动机需求,结合多电分布式控制特点和优势,基于先进算法,开展了多电分布式控制系统故障诊断与容错关键技术研究。首先从航空发动机分布式控制系统、多电发动机、故障诊断与容错控制方法和硬件在环仿真平台搭建4个方面对国内外航空发动机多电分布式控制系统故障诊断与容错技术进行梳理,总结了多电分布式控制系统故障诊断与容错的关键问题;之后提出了多电分布式控制系统的故障诊断与容错架构设计、基于模型的故障诊断与容错方法、双主动冗余电机控制系统故障诊断与容错方案、基于深度学习的电力作动器故障诊断与容错方案和硬件在环仿真平台搭建的关键技术;最后对航空发动机多电分布式控制系统故障诊断与容错未来的发展趋势进行展望。

本文引用格式

赵万里 , 郭迎清 , 徐柯杰 , 王灿森 , 应豪杰 , 陶欣昕 . 航空发动机多电分布式控制系统故障诊断与容错关键技术综述[J]. 航空学报, 2023 , 44(10) : 27519 -027519 . DOI: 10.7527/S1000-6893.2022.27519

Abstract

In view of the demand for future aero-engines,combined with the characteristics and advantages of multi electric distributed control,the key technologies of fault diagnosis and accommodation of multi-electric distributed engine control system are studied based on advanced algorithms. Firstly,this paper summarizes the fault diagnosis and accommodation technology of multi-electric distributed engine control system at home and abroad from four aspects:distributed engine control system,more electric engine,fault diagnosis and fault-tolerant control methods and hardware in the loop simulation platform,and points out the key problems of fault diagnosis and accommodation of multi-electric distributed engine control system at present. Then the key technologies are proposed,which are the design of fault diagnosis and accommodation architecture of multi-electric distributed engine control system,the model-based fault diagnosis and fault-tolerant control method,the fault diagnosis and accommodation scheme of dual active redundant motor control system,the electro-mechanical actuator fault diagnosis and accommodation scheme based on deep learning,and the construction of hardware in the loop simulation platform. Finally,the future development trend of fault diagnosis and fault tolerance of aeroengine multi electric distributed control system is prospected.

参考文献

1 李睿超. 航空发动机分布式控制系统关键技术研究[D]. 西安:西北工业大学,2019.
  LI R C. On key technologies of distributed engine control system[D]. Xi’an:Northwestern Polytechnical University,2019 (in Chinese).
2 PAKMEHR M, BEHBAHANI A R,RAY A. Distributed modular supervisory control of integrated aircraft propulsion,power,and thermal systems:An overview[C] ∥ 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2017.
3 GOHARDANI A S, DOULGERIS G, SINGH R. Challenges of future aircraft propulsion:A review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J]. Progress in Aerospace Sciences201147(5): 369-391.
4 BRELJE B J, MARTINS J R R A. Electric,hybrid,and turboelectric fixed-wing aircraft:A review of concepts,models,and design approaches[J]. Progress in Aerospace Sciences2019104: 1-19.
5 RENDóN M, SáNCHEZ R C D, GALLO M J, et al. Aircraft hybrid-electric propulsion:Development trends,challenges and opportunities[J]. Journal of Control, Automation and Electrical Systems202132(5): 1244-1268.
6 孙莉. 多电航空发动机关键技术在某型航空发动机上的初步应用[C]∥2015年第二届中国航空科学技术大会. 北京:中国航空学会, 2015: 315-320.
  SUN L. Preliminary application of key technologies of multi-electric aero-engine in a certain type of aero-engine[C] ∥ Proceedings of the 2nd China Aviation Science and Technology Conference in 2015. Beijing:Chinese Society of Aeronautics and Astronautics, 2015: 315-320 (in Chinese).
7 孙志岩. 航空发动机控制系统发展概述[J]. 测控技术201938(6): 1-4.
  SUN Z Y. Overview of the development of aero-engine control system[J]. Measurement & Control Technology201938(6): 1-4 (in Chinese).
8 BEHBAHANI A R, MACMANN O B, SEITZ T M,et al. Integrated robust and resilient control of propulsion systems[C] ∥ 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2016.
9 MIRKO J, LEONARD F, DEWEY B. Expectation and vision for true modular distributed engine control-beyond 1st project[C] ∥ 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2008.
10 THOMPSON H A, FLEMING P J. An integrated multi-disciplinary optimisation environment for distributed aero-engine control systems architectures[J]. IFAC Proceedings Volumes199932(2): 8084-8088.
11 BEHBAHANI A, TULPULE B. Perspective for distributed intelligent engine controls of the future[C] ∥ 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2010.
12 SHAFFER P L. Distributed control system for turbine engines[J]. Journal of Engineering for Gas Turbines and Power1999121(1):102-107.
13 YEDAVALLI R, WILLETT M, BEHBAHANI A. The role of various real-time communication data bus for open system distributed engine control architectures for the future[C] ∥ 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2011.
14 PAKMEHR M, MOUNIER M, FITZGERALD N,et al. Distributed control of turbofan engines[C] ∥ 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2009.
15 郭迎清,章泓. 航空发动机分布式控制系统综述[J]. 航空发动机200329(3): 52-55.
  GUO Y Q, ZHANG H. Survey of the distributed control system for an aeroengine[J]. Aeroengine200329(3):52-55 (in Chinese).
16 何鹄环, 郭迎清. 基于DSP和CAN的航空发动机分布式控制系统设计[J]. 航空计算技术200636(1): 30-32.
  HE H H, GUO Y Q. Design of distributed control system for aero-engines based on DSP and CAN[J]. Aeronautical Computing Technique200636(1): 30-32 (in Chinese).
17 李光耀, 郭迎清, 王海泉. 基于CAN总线的航空发动机分布式控制系统通信研究[J]. 测控技术200928(1):62-66, 69.
  LI G Y, GUO Y Q, WANG H Q. Communication research on CAN based distributed aero-engine control system[J]. Measurement & Control Technology200928(1): 62-66, 69 (in Chinese).
18 李光耀, 郭迎清, 祁新杰. 航空发动机分布式控制系统原理样机研制[J]. 计算机测量与控制200917(5):865-868.
  LI G Y, GUO Y Q, QI X J. Construction of distributed aero-engine control system demonstrator[J]. Computer Measurement & Control200917(5): 865-868 (in Chinese).
19 田飞龙, 郭迎清, 李睿超, 等. 某涡扇发动机分布式控制系统设计与总线性能[J]. 航空动力学报201530(9):2278-2285.
  TIAN F L, GUO Y Q, LI R C,et al. Design of distributed control system and investigation on bus communication performance of a turbofan engine[J]. Journal of Aerospace Power201530(9): 2278-2285 (in Chinese).
20 李睿超,郭迎清,李岩,等. 基于数据集中器的超燃冲压发动机分布式控制系统通信方案设计[J]. 推进技术201637(9):1766-1773.
  LI R C, GUO Y Q, LI Y,et al. Communication scheme design of distributed control system for scramjet engine based on data concentrators[J]. Journal of Propulsion Technology201637(9): 1766-1773 (in Chinese).
21 李睿超, 郭迎清, 姜彩虹, 等. 航空发动机分布式控制系统时延/丢包鲁棒性分析[J]. 航空动力学报201732(6): 1441-1446.
  LI R C, GUO Y Q, JIANG C H,et al. Transmission delay/packet dropout robustness analysis of distributed control system of aero-engine[J]. Journal of Aerospace Power201732(6): 1441-1446 (in Chinese).
22 谢振伟, 郭迎清, 姜彩虹, 等. 变循环发动机完全分布式控制[J]. 航空学报201637(6): 1809-1818.
  XIE Z W, GUO Y Q, JIANG C H,et al. Fully distributed control of variable cycle engine[J]. Acta Aeronautica et Astronautica Sinica201637(6): 1809-1818 (in Chinese).
23 黄金泉, 徐科. 航空发动机分布式控制系统结构分析[J]. 航空动力学报200318(5): 698-704.
  HUANG J Q, XU K. Distributed control systems for aeroengines:A survey[J]. Journal of Aerospace Power200318(5): 698-704 (in Chinese).
24 李勇, 黄金泉, 潘慕绚. 带有网络时延的航空发动机分布式系统H∞鲁棒控制[J]. 伺服控制2013(8): 39-41, 44.
  LI Y, HUANG J Q, PAN M X. H∞ robust control of aero-engine distributed system with network delay[J]. Servo Control2013(8): 39-41, 44 (in Chinese).
25 关越, 潘慕绚. 基于DSP的航空发动机分布式控制TTCAN总线的节点设计[J]. 航空发动机201339(4):61-66.
  GUAN Y, PAN M X. Design of TTCAN node for aeroengine distributed control system based on DSP[J]. Aeroengine201339(4): 61-66 (in Chinese).
26 宋军强, 潘慕绚, 黄金泉. 航空发动机分布式控制系统技术分析及系统方案[J]. 航空动力学报201328(10):2391-2400.
  SONG J Q, PAN M X, HUANG J Q. Technology analysis and system scheme for aero-engine distributed control system[J]. Journal of Aerospace Power201328(10): 2391-2400 (in Chinese).
27 王海涛, 张攻博, 谢寿生, 等. 基于分布式控制的航空发动机智能转速传感器[J]. 传感器与微系统200827(10): 86-88.
  WANG H T, ZHANG G B, XIE S S, et al. Smart rotate speed sensor for aircraft engine based on distributed control[J]. Transducer and Microsystem Technologies200827(10): 86-88 (in Chinese).
28 王海涛, 翟旭升, 谢寿生,等. 基于DSP的航空发动机智能计量活门控制器[J]. 仪表技术与传感器2009(3):81-83.
  WANG H T, ZHAI X S, XIE S S,et al. Aircraft engine intelligent scale valve based on DSP[J]. Instrument Technique and Sensor2009(3): 81-83 (in Chinese).
29 王磊,谢寿生,彭靖波,等. 航空发动机分布式控制系统不确定性鲁棒H∞容错控制[J]. 推进技术201334(6):836-842.
  WANG L, XIE S S, PENG J B,et al. Uncertain robust H∞ fault-tolerant control for aero-engine distributed control system[J]. Journal of Propulsion Technology201334(6):836-842 (in Chinese).
30 王磊,谢寿生,彭靖波,等. 双目标约束下的航空发动机分布式控制系统最优保成本容错控制[J]. 航空动力学报201429(7):1729-1737.
  WANG L, XIE S S, PENG J B,et al. Optimal guaranteed cost fault-tolerant control with bi-index constraints for aero-engine distributed control system[J]. Journal of Aerospace Power201429(7):1729-1737 (in Chinese).
31 JANSEN R, BOWMAN C, JANKOVSKY A,et al. Overview of NASA electrified aircraft propulsion(EAP)research for large subsonic transports[C] ∥ 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston:AIAA, 2017.
32 MORIOKA N, OYORI H, GONDA Y,et al. Development of the electric fuel system for the more electric engine[C] ∥ ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York: ASME, 2014.
33 OYORI H, MORIOKA N. Fault-tolerant control for the more electric engine[C] ∥ 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.
34 SEKI N, MORIOKA N, OYORI H,et al. Development of fuel control system for more electric engine[C] ∥ Proceedings of ASME Turbo Expo 2015:Turbine Technical Conference and Exposition. New York: ASME, 2015.
35 SIMON D L, CONNOLLY J W, CULLEY D E. Control technology needs for electrified aircraft propulsion systems[J]. Journal of Engineering for Gas Turbines and Power2020142(1): 011025.
36 孙立业,郝羿飞,赵奉同. 多电发动机技术及其应用前景研究[J]. 沈阳航空航天大学学报201734(2):1-5.
  SUN L Y, HAO Y F, ZHAO F T. More electric engine technology and its application prospect[J]. Journal of Shenyang Aerospace University201734(2):1-5 (in Chinese).
37 吴志琨,李军,时瑞军. 多电航空发动机研究现况及关键技术[J]. 航空工程进展20123(4):463-467.
  WU Z K, LI J, SHI R J. Current research status and key technologies of more-electric aeroengine[J]. Advances in Aeronautical Science and Engineering20123(4):463-467 (in Chinese).
38 高毅军,黄金泉,唐世建. 基于分布式控制的航空发动机电动燃油泵方案研究[J]. 燃气涡轮试验与研究201225(S1):36-40.
  GAO Y J, HUANG J Q, TANG S J. Aero-engine electromotion fuel pump based on distributed control[J]. Gas Turbine Experiment and Research201225(S1):36-40 (in Chinese).
39 田瑶瑶,张惠娟,杨忠,等. 基于小波包和SOM神经网络的电作动器故障诊断[J]. 应用科技201845(1):1-6.
  TIAN Y Y, ZHANG H J, YANG Z,et al. Fault diagnosis of electromechanical actuator based on wavelet packet and SOM neural network[J]. Applied Science and Technology201845(1):1-6 (in Chinese).
40 MOHAMMADREZA T, TSOUTSANIS E,MUHAMM- AD M,et al. Performance-based health monitoring,diagnostics and prognostics for condition-based maintenance of gas turbines:A review[J]. Applied Energy2017198:122-144.
41 黄金泉,王启航,鲁峰. 航空发动机气路故障诊断研究现状与展望[J]. 南京航空航天大学学报202052(4):507-522.
  HUANG J Q, WANG Q H, LU F. Research status and prospect of gas path fault diagnosis for aeroengine[J]. Journal of Nanjing University of Aeronautics & Astronautics202052(4):507-522 (in Chinese).
42 李少尘, 陈敏, 胡金涛, 等. 航空燃气涡轮发动机气路故障诊断进展[J]. 航空发动机202248(2): 33-49.
  LI S C, CHEN M, HU J T,et al. A review of research progress on aircraft gas turbine engines gas path fault diagnosis[J]. Aeroengine202248(2): 33-49 (in Chinese).
43 ZEIN-SABATTO S, BODRUZZAMAN M, MGAYA R,et al. Distributed onboard diagnostic methodology for next generation turbine engines[C] ∥ 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2010.
44 CULLEY D E, THOMAS G L, ARETSKIN-HARITON E. A network scheduling model for distributed control simulation[C] ∥ 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2016.
45 WATSON M, SHELDON J, LEE H,et al. Distributed,integrated PHM and control via smart engine accessories for future modern aircraft[C] ∥ 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2010.
46 BELAPURKAR R, YEDAVALLI R, BEHBAHANI A. Study of model-based fault detection of distributed aircraft engine control systems with transmission delays[C] ∥ 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2011.
47 BELAPURKAR R K. Stability and performance of propulsion control systems with distributed control architectures and failures[D]. Ohio:State University,2013.
48 DECASTRO J, TANG L, BYINGTON C,et al. Analysis of decentralization and fault-tolerance concepts for distributed engine control[C] ∥ 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2009.
49 DECASTRO J, PALMER C, BEHBAHANI A. Meeting the requirements of distributed engine control via decentralized,modular smart sensing[C] ∥ 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2010.
50 曹明,黄金泉,周健,等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅰ:气路、机械和FADEC系统故障诊断与预测[J]. 航空学报202243(9):625573.
  CAO M, HUANG J Q, ZHOU J,et al. Current status,challenges and opportunities of civil aero-engine diagnostics & health managementⅠ: Diagnosis and prognosis of engine gas path,mechanical and FADEC[J]. Acta Aeronautica et Astronautica Sinica202243(9):625573 (in Chinese).
51 鲁峰,黄金泉,吕怡秋,等. 基于非线性自适应滤波的发动机气路部件健康诊断方法[J]. 航空学报201334(11):2529-2538.
  LU F, HUANG J Q, LYU Y Q,et al. Aircraft engine gas-path components health diagnosis based on nonlinear adaptive filters[J]. Acta Aeronautica et Astronautica Sinica201334(11): 2529-2538 (in Chinese).
52 张书刚,郭迎清,冯健朋. 航空发动机在线综合诊断结构设计及仿真验证[J]. 航空学报201435(2):381-390.
  ZHANG S G, GUO Y Q, FENG J P. Design and simulation validation of an integrated on-board aircraft engine diagnostic architecture[J]. Acta Aeronautica et Astronautica Sinica201435(2): 381-390 (in Chinese).
53 卢俊杰,黄金泉,鲁峰. 涡扇发动机故障诊断中粒子滤波改进方法[J]. 航空发动机202046(2):41-46.
  LU J J, HUANG J Q, LU F. Improved method of particle filter in turbofan engine fault diagnosis[J]. Aeroengine202046(2):41-46 (in Chinese).
54 翟旭升,谢寿生,苗卓广,等. 基于T-S模糊模型的航空发动机非线性分布式控制系统故障诊断[J]. 航空动力学报201328(6):1429-1435.
  ZHAI X S, XIE S S, MIAO Z G,et al. Fault detection of aero-engine non-linear distributed control system based on T-S fuzzy model[J]. Journal of Aerospace Power201328(6): 1429-1435 (in Chinese).
55 翟旭升,杨仕美,彭靖波,等. 多包传输机制下航空发动机分布式控制系统故障检测[J]. 空军工程大学学报(自然科学版)201819(3):1-6.
  ZHAI X S, YANG S M, PENG J B,et al. A fault detection for aero-engine in the distributed control system under condition of multiple-packet transmission[J]. Journal of Air Force Engineering University(Natural Science Edition)201819(3):1-6 (in Chinese).
56 王磊,谢寿生,任立通,等. 基于T-S模糊KPCA模型的分布式控制系统传感器故障诊断[J]. 推进技术201435(7):988-995.
  WANG L, XIE S S, REN L T,et al. Fault diagnosis of sensors in distributed control system based on T-S fuzzy KPCA model[J]. Journal of Propulsion Technology201435(7):988-995 (in Chinese).
57 LU F, GAO T Y, HUANG J Q,et al. A novel distributed extended Kalman filter for aircraft engine gas-path health estimation with sensor fusion uncertainty[J]. Aerospace Science and Technology201984:90-106.
58 余志伟,郭迎清. 涡轴发动机分布式控制系统传感器故障诊断技术[J]. 推进技术202243(4):318-325.
  YU Z W, GUO Y Q. Sensor fault diagnosis technology for distributed control system of turboshaft engine[J]. Journal of Propulsion Technology202243(4):318-325 (in Chinese).
59 AMIN A A, HASAN K M. A review of fault tolerant control systems:Advancements and applications[J]. Measurement2019143: 58-68.
60 RAUSCH R T, GOEBEL K F, EKLUND N H,et al. Integrated in-flight fault detection and accommodation:a model-based study[J]. Journal of Engineering for Gas Turbines and Power2007129(4):962-969.
61 RAUSCH R T, VIASSOLO D, KUMAR A,et al. Towards in-flight detection and accommodation of faults in aircraft engines[C] ∥ AIAA 1st Intelligent Systems Technical Conference. Reston: AIAA, 2004.
62 CHATTERJEE S, LITT J. Online model parameter estimation of jet engine degradation for autonomous propulsion control[C] ∥ AIAA Guidance,Navigation,and Control Conference and Exhibit. Reston: AIAA, 2003.
63 TURSO J, LITT J. Intelligent,robust control of deteriorated turbofan engines via linear parameter varing quadratic Lyapunov function design[C] ∥ AIAA 1st Intelligent Systems Technical Conference. Reston: AIAA, 2004.
64 BRUNELL B J, MATHEWS JR H K, KUMAR A. Adaptive model-based control systems and methods for controlling a gas turbine: US6823675 [P]. 2004-11-30.
65 贺小栋,郭迎清,杜宪. 一种基于模型的涡扇发动机容错控制策略[J]. 航空动力学报201631(3):708-716.
  HE X D, GUO Y Q, DU X. A model-based fault tolerant control strategy for turbofan engine[J]. Journal of Aerospace Power201631(3):708-716 (in Chinese).
66 杜宪,郭迎清,陈小磊. 基于MPC的民用涡扇发动机主动容错控制研究[J]. 推进技术201536(8):1242-1247.
  DU X, GUO Y Q, CHEN X L. MPC based active fault tolerant control of a commercial turbofan engine[J]. Journal of Propulsion Technology201536(8):1242-1247 (in Chinese).
67 杨征山,仇小杰,庄锡明,等. 基于模态切换的航空发动机容错控制[J]. 航空动力学报201429(4):953-964.
  YANG Z S, QIU X J, ZHUANG X M,et al. Aero-engine fault-tolerant control based on mode switch[J]. Journal of Aerospace Power201429(4): 953-964 (in Chinese).
68 张天宏,袁元,李凌蔚,等. 航空发动机部件性能退化容错控制[J]. 推进技术202142(8):1690-1699.
  ZHANG T H, YUAN Y, LI L W,et al. Accommodation control for component performance deterioration of aeroengine[J]. Journal of Propulsion Technology202142(8):1690-1699 (in Chinese).
69 吕升,郭迎清,孙浩. 航空发动机故障诊断装置硬件在环实时仿真平台[J]. 航空发动机201743(3):43-49.
  LYU S, GUO Y Q, SUN H. Hardware-in-the-loop real-time simulation platform of engine fault diagnosis device[J]. Aeroengine201743(3):43-49 (in Chinese).
70 CULLEY D E, ZINNECKER A M, ARETSKIN-HARITON E. Developing an integration infrastructure for distributed engine control technologies[C]∥50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2014.
71 THOMAS G L, CULLEY D E, BRAND A. The application of hardware in the loop testing for distributed engine control[C]∥52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA,2016.
72 TOBóN A, PELáEZ-RESTREPO J, MONTANO J,et al. MPPT of a photovoltaic panels array with partial shading using the IPSM with implementation both in simulation as in hardware[J]. Energies202013(4):815.
73 PANDI P, MOPIDEVI S, KRISHNAN S. Design and analysis of grid tied renewable energy system based E-chopper using main controller[J]. Journal Européen Des Systèmes Automatisés202053(4):505-515.
74 KHAMVILAI T, PAKMEHR M, LU G,et al. Hardware-in-the-loop simulation testbed development for distributed turbine engine control systems[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022.
75 ZHAO W L, GUO Y Q, YANG J,et al. Hardware-in-the-loop simulation platform for fault diagnosis of rocket engines[C]∥2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering(ICMAE). Piscataway: IEEE Press, 2019: 268-273.
76 赵万里,郭迎清,杨菁,等. 液体火箭发动机故障诊断器设计及其HIL验证[J]. 北京航空航天大学学报201945(10):1995-2002.
  ZHAO W L, GUO Y Q, YANG J,et al. Design of liquid rocket engine fault diagnosis device and its HIL verification[J]. Journal of Beijing University of Aeronautics and Astronautics201945(10):1995-2002 (in Chinese).
77 赵占越. 控制器硬件在环仿真系统接口模拟技术研 究[D]. 西安:西北工业大学,2019.
  ZHAO Z Y. Research on interface simulation technology of controller hardware-in-the-loop simulation system[D]. Xi’an:Northwestern Polytechnical University,2019 (in Chinese).
78 林忠麟. 高置信度FADEC接口模拟技术研究[D]. 南京:南京航空航天大学,2015.
  LIN Z L. Research on FADEC interface emulation technology with high confidence[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2015 (in Chinese).
79 WANG C S, GUO Y Q, ZHAO W L,et al. Hardware-in-the-loop simulation platform for fault diagnosis of distributed engine control system[C] ∥ 2022 13th International Conference on Mechanical and Aerospace Engineering(ICMAE). Piscataway: IEEE Press, 2022: 102-107.
80 YANG J, GUO Y Q, ZHAO W L. Long short-term memory neural network based fault detection and isolation for electro-mechanical actuators[J]. Neurocomputing2019360:85-96.
81 YANG J, GUO Y Q, ZHAO W L. An intelligent fault diagnosis method for an electromechanical actuator based on sparse feature and long short-term network[J]. Measurement Science and Technology202132(9):095102.
文章导航

/