电子电气工程与控制

超高灵敏极弱磁场与惯性测量科学装置与零磁科学展望

  • 房建成 ,
  • 魏凯 ,
  • 江雷 ,
  • 向岷 ,
  • 陆吉玺
展开
  • 1. 北京航空航天大学 大科学装置研究院, 北京 100191;
    2. 杭州极弱磁场重大科技基础设施研究院, 杭州 310051;
    3. 中国科学院 理化技术研究所, 北京 100080;
    4. 中国科学院大学 未来技术学院, 北京 100049

收稿日期: 2022-07-04

  修回日期: 2022-07-12

  网络出版日期: 2022-10-12

Scientific facilities for ultrasensitive measurement of magnetic field and inertial rotation and prospects of zero-magnetism science

  • FANG Jiancheng ,
  • WEI Kai ,
  • JIANG Lei ,
  • XIANG Min ,
  • LU Jixi
Expand
  • 1. Institute of Large-Scale Scientific Facility, Beihang University, Beijing 100191, China;
    2. Hangzhou Extremely Weak Magnetic Field Major Science and Technology Infrastructure Research Institute, Hangzhou 310051, China;
    3. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080, China;
    4. School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2022-07-04

  Revised date: 2022-07-12

  Online published: 2022-10-12

摘要

超高灵敏极弱磁场与惯性量子精密测量技术已被广泛应用于人体脑磁和心磁等生物磁信号成像领域,以及暗物质和第五力探测、固有电偶极矩测量和基本对称性破缺验证等前沿基础物理探索,为认识物质世界提供了强有力的工具;同时在磁异常探测和高精度惯性导航系统等国家安全领域有着迫切应用需求。继续冲击超高灵敏度测量纪录和打造极弱磁场环境,是进一步探索基础物理研究边界、拓展生物磁成像应用和服务国家战略需求的关键。首先,对超高灵敏极弱磁场与惯性测量科学装置和基础应用进行概要介绍,涉及工作原理、系统组成和设计分析方法。然后,对无自旋交换弛豫原子磁强计和零磁空间进行概要分析,为指标性能进一步提升提供思路。最后,虽然强磁场环境下物性研究已经取得丰硕成果,但是极弱磁场环境中的基础科学研究十分匮乏,提出零磁科学基础研究设想,基于超高灵敏极弱磁场与惯性测量科学装置的技术基础,利用极弱磁场环境、超高灵敏磁测量和精密磁场操控方法,开展零磁医学、零磁生物学、零磁化学和零磁材料学的基础科学研究,有望构建零磁科学系统理论。

本文引用格式

房建成 , 魏凯 , 江雷 , 向岷 , 陆吉玺 . 超高灵敏极弱磁场与惯性测量科学装置与零磁科学展望[J]. 航空学报, 2022 , 43(10) : 527752 -527752 . DOI: 10.7527/S1000-6893.2021.27752

Abstract

Ultrasensitive atomic magnetometer and co-magnetometer have provided powerful tools for studies on the material world. These devices are widely used in imaging of biomagnetic signals and frontier physics research, such as magnetocardiography, magnetoencephalography, search for dark matter and the fifth force, measurement of permanent electric dipole moment, and violation of fundamental symmetry, and are urgently needed in national security areas such as magnetic anomaly detection and high-precision inertial navigation systems. Improving sensitivity records and building ultra-low magnetic field environment are pivotal for further research of fundamental physics, biomagnetic imaging and major national needs. Firstly, schematic introductions of ultrasensitive atomic magnetometer and co-magnetometer as well as their basic applications are presented, including the working principle, experiment setup, and theoretical model. Secondly, schematic summaries of atomic magnetometer and magnetic shield room are presented, specifying the ways to improve the performance. Finally, considering the basic research on the extremely weak magnetic field environment is still very scarce in spite of fruitful results of research on physical properties in the strong magnetic field environment, this paper proposes a basic research concept of zero-magnetism science. Based on the facilities of ultrasensitive atomic magnetometer, co-magnetometer and magnetic shield room, the technologies of ultra-low magnetic field environment, ultrasensitive magnetic measurement, and precise magnetic field manipulation are utilized to conduct the basic scientific research including zero-magnetism medicine, zero-magnetism biology, zero-magnetism chemistry and zero-magnetism materials science, hoping to develop a theoretical system for zero-magnetism science.

参考文献

[1] DEGEN C L, REINHARD F, CAPPELLARO P. Quantum sensing[J]. Reviews of Modern Physics, 2017, 89(3):035002.
[2] PEZZè L, SMERZI A, OBERTHALER M K, et al. Quantum metrology with nonclassical states of atomic ensembles[J]. Reviews of Modern Physics, 2018, 90(3):035005.
[3] BOTO E, HOLMES N, LEGGETT J, et al. Moving magnetoencephalography towards real-world applications with a wearable system[J]. Nature, 2018, 555(7698):657-661.
[4] BUDKER D, ROMALIS M. Optical magnetometry[J]. Nature Physics, 2007, 3(4):227-234.
[5] TERRANO W A, ROMALIS M V. Comagnetometer probes of dark matter and new physics[J]. Quantum Science and Technology, 2022, 7(1):014001.
[6] ALMASI A, LEE J Y, WINARTO H, et al. New limits on anomalous spin-spin interactions[J]. Physical Review Letters, 2020, 125(20):201802.
[7] KORNACK T W, GHOSH R K, ROMALIS M V. Nuclear spin gyroscope based on an atomic comagnetometer[J]. Physical Review Letters, 2005, 95(23):230801.
[8] TIERNEY T M, HOLMES N, MELLOR S, et al. Optically pumped magnetometers:From quantum origins to multi-channel magnetoencephalography[J]. NeuroImage, 2019, 199:598-608.
[9] SAFRONOVA M S, BUDKER D, DEMILLE D, et al. Search for new physics with atoms and molecules[J]. Reviews of Modern Physics, 2018, 90(2):025008.
[10] BROWN J M, SMULLIN S J, KORNACK T W, et al. New limit on Lorentz-and CPT-violating neutron spin interactions[J]. Physical Review Letters, 2010, 105(15):151604.
[11] LEE J Y, ALMASI A, ROMALIS M. Improved limits on spin-mass interactions[J]. Physical Review Letters, 2018, 120(16):161801.
[12] VASILAKIS G, BROWN J M, KORNACK T W, et al. Limits on new long range nuclear spin-dependent forces set with a K-3He comagnetometer[J]. Physical Review Letters, 2009, 103(26):261801.
[13] JI W, CHEN Y, FU C B, et al. New experimental limits on exotic spin-spin-velocity-dependent interactions by using SmCo5 spin sources[J]. Physical Review Letters, 2018, 121(26):261803.
[14] ABEL C, AFACH S, AYRES N J, et al. Measurement of the permanent electric dipole moment of the neutron[J]. Physical Review Letters, 2020, 124(8):081803.
[15] PASSARO V M N, CUCCOVILLO A, VAIANI L, et al. Gyroscope technology and applications:A review in the industrial perspective[J]. Sensors (Basel), 2017, 17(10):2284.
[16] ZHANG C, YUAN H, TANG Z, et al. Inertial rotation measurement with atomic spins:From angular momentum conservation to quantum phase theory[J]. Applied Physics Reviews, 2016, 3(4):041305.
[17] LI R J, FAN W F, JIANG L W, et al. Rotation sensing using a K-Rb-Ne21 comagnetometer[J]. Physical Review A, 2016, 94(3):032109.
[18] 张朝阳, 刘济民, 杨林. 磁探潜关键技术现状及发展趋势[J]. 科学技术与工程, 2022, 22(1):18-27. ZHANG Z Y, LIU J M, YANG L. Situation and development trend of the key technology of magnetic submarine exploration[J]. Science Technology and Engineering, 2022, 22(1):18-27 (in Chinese).
[19] 成建波, 孙心毅. 航空磁异常探潜技术发展综述[J]. 声学与电子工程, 2018(3):46-49. CHENG J B, SUN X Y. Overview of the development of airborne magnetic anomaly submarine exploration technology[J]. Acoustics and Electronics Engineering, 2018(3):46-49 (in Chinese).
[20] DANG H B, MALOOF A C, ROMALIS M V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 2010, 97(15):151110.
[21] TSUNAKAWA H, SHIBUYA H, TAKAHASHI F, et al. Lunar magnetic field observation and initial global mapping of lunar magnetic anomalies by MAP-LMAG onboard SELENE (kaguya)[J]. Space Science Reviews, 2010, 154(1):219-251.
[22] RUNCORN S K. An ancient lunar magnetic dipole field[J]. Nature, 1975, 253(5494):701-703.
[23] 李磊, 王劲东, 周斌, 等. 磁通门磁强计在深空探测中的应用[J]. 深空探测学报, 2017, 4(6):529-534. LI L, WANG J D, ZHOU B, et al. Application of fluxgate magnetometer in deep space exploration[J]. Journal of Deep Space Exploration, 2017, 4(6):529-534 (in Chinese).
[24] LI C L, ZHANG R Q, YU D Y, et al. China's Mars exploration mission and science investigation[J]. Space Science Reviews, 2021, 217(4):57.
[25] ALLRED J C, LYMAN R N, KORNACK T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation[J]. Physical Review Letters, 2002, 89(13):130801.
[26] KOMINIS I K, KORNACK T W, ALLRED J C, et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 2003, 422(6932):596-599.
[27] MA D Y, LU J X, FANG X J, et al. Parameter modeling analysis of a cylindrical ferrite magnetic shield to reduce magnetic noise[J]. IEEE Transactions on Industrial Electronics, 2022, 69(1):991-998.
[28] TROULLINOU C, JIMÉNEZ-MARTÍNEZ R, KONG J, et al. Squeezed-light enhancement and backaction evasion in a high sensitivity optically pumped magnetometer[J]. Physical Review Letters, 2021, 127(19):193601.
[29] QUAN W, WEI K, ZHAO T, et al. Synchronous measurement of inertial rotation and magnetic field using a K-Rb-Ne21 comagnetometer[J]. Physical Review A, 2019, 100:012118.
[30] WEI K, ZHAO T, FANG X J, et al. Broadening of magnetic linewidth by spin-exchange interaction in the K-Rb-21Ne comagnetometer[J]. Optics Express, 2020, 28(22):32601-32611.
[31] WEI K, ZHAO T, FANG X J, et al. Simultaneous determination of the spin polarizations of noble-gas and alkali-metal atoms based on the dynamics of the spin ensembles[J]. Physical Review Applied, 2020, 13(4):044027.
[32] LEE J. New constraints on the Axion's coupling to nucleons from a spin mass interaction limiting experiment (SMILE)[D]. Princeton:Princeton University, 2019.
[33] KORNACK T W, ROMALIS M V. Dynamics of two overlapping spin ensembles interacting by spin exchange[J]. Physical Review Letters, 2002, 89(25):253002.
[34] WEI K, ZHAO T, FANG X J, et al. In-situ measurement of the density ratio of K-Rb hybrid vapor cell using spin-exchange collision mixing of the K and Rb light shifts[J]. Optics Express, 2019, 27(11):16169-16183.
[35] SMICIKLAS M, BROWN J M, CHEUK L W, et al. New test of local Lorentz invariance using a 21Ne-Rb-K comagnetometer[J]. Physical Review Letters, 2011, 107(17):171604.
[36] SMICIKLAS M, VERNAZA A, ROMALIS M. Test of Lorentz invariance at the Amundsen:Scott south pole station[EB/OL]. (2013-06-06). https://physics.princeton.edu//romalis/CPT/presentations/DAMOP%202013%20-Poster.pdf.
[37] FANG J C, QIN J. Advances in atomic gyroscopes:A view from inertial navigation applications[J]. Sensors (Basel, Switzerland), 2012, 12(5):6331-6346.
[38] ROMALIS M, KORNACK T. Chip-scale combinatorial atomic navigator (C-SCAN) low drift nuclear spin gyroscope[R]. Princeton:Princeton University, 2018.
[39] RENON G, ZAHZAM N, BIDEL Y, et al. A nuclear-electronic spin gyro-comagnetometer[C]//APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts, 2013.
[40] SHI M. Investigation on magnetic field response of a 87Rb-129Xe atomic spin comagnetometer[J]. Optics Express, 2020, 28(21):32033-32041.
[41] FU Y, FAN W F, RUAN J S, et al. Effects of probe laser intensity on co-magnetometer operated in spin-exchange relaxation-free regime[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71:1-7.
[42] LU F, LU J X, LI B, et al. Triaxial vector operation in near-zero field of atomic magnetometer with femtotesla sensitivity[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71:1-10.
[43] SHAH V, ROMALIS M V. Spin-exchange relaxation-free magnetometry using elliptically polarized light[J]. Physical Review, A, 2009, 80(1 Pt.2):1-6.
[44] SHAH V K, WAKAI R T. A compact, high performance atomic magnetometer for biomedical applications[J]. Physics in Medicine and Biology, 2013, 58(22):8153-8161.
[45] JOHNSON C N, SCHWINDT P D, WEISEND M. Multi-sensor magnetoencephalography with atomic magnetometers[J]. Physics in Medicine and Biology, 2013, 58(17):6065-6077.
[46] KITCHING J. Chip-scale atomic devices[J]. Applied Physics Reviews, 2018, 5(3):031302.
[47] QuSpin Zero-Field Magnetometer Gen-3. Quspin company[EB/OL]. https://quspin.com/products-qzfm/.
[48] ZHANG G Y, ZENG H J, TAN G B, et al. An integrated high-sensitivity VCSEL-based spin-exchange relaxation-free magnetometer with optical rotation detection[J]. IEEE Sensors Journal, 2022, 22(8):7700-7708.
[49] RU X Y, HE K Y, LYU B J, et al. Multimodal neuroimaging with optically pumped magnetometers:A simultaneous MEG-EEG-fNIRS acquisition system[J]. NeuroImage, 2022, 259:119420.
[50] 王礼庭. 中日人口老龄化的经济影响及对策比较研究[D]. 上海:华东师范大学, 2020. WANG L T. A comparative study on the economic impacts and countermeasures of aging population in China and Japan[D]. Shanghai:East China Normal University, 2020 (in Chinese).
[51] 朱翠明. 中国现代化进程中的人口老龄化问题与应对研究[D]. 长春:吉林大学, 2021. ZHU C M. Aging of population in the process of modernization in China and its countermeasures[D]. Changchun:Jilin University, 2021 (in Chinese).
[52] CAO F Z, AN N, XU W N, et al. Co-registration comparison of on-scalp magnetoencephalography and magnetic resonance imaging[J]. Frontiers in Neuroscience, 2021, 15:706785.
[53] AN N, CAO F Z, LI W, et al. Imaging somatosensory cortex responses measured by OPM-MEG:Variational free energy-based spatial smoothing estimation approach[J]. iScience, 2022, 25(2):103752.
[54] YANG Y F, XU M Z, LIANG A M, et al. A new wearable multichannel magnetocardiogram system with a SERF atomic magnetometer array[J]. Scientific Reports, 2021, 11(1):5564.
[55] COHEN D. A shielded facility for low-level magnetic measurements[J]. Journal of Applied Physics, 1967, 38(3):1295-1296.
[56] ERNé S N, HAHLBOHM H D, PALOW J. The Berlin Magnetically Shielded Room (BMSR) section C -periphery[M]//Biomagnetism. Berlin:De Gruyter, 1981:89-94.
[57] BORK J, HAHLBOHM H D, KLEIN R, et al. The 8-layered magnetically shielded room of the PTB:Design and construction[C]//Biomag2000, Processing 12th Internet Conference on Biomagnetism. 2000.
[58] SOLTNER H, PABST U, BUTZEK M, et al. Design, construction, and performance of a magnetically shielded room for a neutron spin echo spectrometer[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 644(1):40-47.
[59] ALTAREV I, BALES M, BECK D H, et al. A large-scale magnetic shield with 106 damping at millihertz frequencies[J]. Journal of Applied Physics, 2015, 117(18):183903.
[60] 张志友, 李嘉璋, 刘建本, 等. 零磁室内环境磁场噪声的测定[J]. 烟台大学学报(自然科学与工程版), 1989, 2(2):37-41. ZHANG Z Y, LI J Z, LIU J B, et al. The ambient magnetic noise measurements of magnetically shielded room[J]. Journal of Yantai University (Natural Science and Engineering), 1989, 2(2):37-41 (in Chinese).
[61] AZEVEDO F A C, CARVALHO L R B, GRINBERG L T, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain[J]. The Journal of Comparative Neurology, 2009, 513(5):532-541.
[62] SARIMOV R M, BINHI V N, MILYAEV V A. The influence of geomagnetic field compensation on human cognitive processes[J]. Biophysics, 2008, 53(5):433-441.
[63] MO W C, FU J P, DING H M, et al. Hypomagnetic field alters circadian rhythm and increases algesia in adult male mice[J]. Prog Biochem Biophys, 2015, 42(7):639-646.
[64] WAN G J, JIANG S L, ZHAO Z C, et al. Bio-effects of near-zero magnetic fields on the growth, development and reproduction of small brown planthopper, Laodelphax striatellus and brown planthopper, Nilaparvata lugens[J]. Journal of Insect Physiology, 2014, 68:7-15.
[65] MO W C, ZHANG Z J, LIU Y, et al. Magnetic shielding accelerates the proliferation of human neuroblastoma cell by promoting G1-phase progression[J]. PLoS One, 2013, 8(1):e54775.
[66] PYLKKÄNEN L. The neural basis of combinatory syntax and semantics[J]. Science, 2019, 366(6461):62-66.
[67] HILL R M, BOTO E, HOLMES N, et al. A tool for functional brain imaging with lifespan compliance[J]. Nature Communications, 2019, 10:4785.
[68] 国家心血管病中心. 中国心血管健康与疾病报告2020[R]. 北京:科学出版社, 2021. National Center for Cardiovascular Diseases. Annual report on cardiovascular health and diseases in China 2020[M]. Beijing:Science Press, 2021 (in Chinese).
[69] PENA M E, PEARSON C L, GOULET M P, et al. A 90-second magnetocardiogram using a novel analysis system to assess for coronary artery stenosis in Emergency department observation unit chest pain patients[J]. International Journal of Cardiology Heart & Vasculature, 2020, 26:100466.
[70] AITA S, OGATA K, YOSHIDA K, et al. Noninvasive mapping of premature ventricular contractions by merging magnetocardiography and computed tomography[J]. JACC Clinical Electrophysiology, 2019, 5(10):1144-1157.
[71] STRAND S, LUTTER W, STRASBURGER J F, et al. Low-cost fetal magnetocardiography:A comparison of superconducting quantum interference device and optically pumped magnetometers[J]. Journal of the American Heart Association, 2019, 8(16):e013436.
[72] 魏武强. 应用于影像组学的肿瘤电磁成像技术研究[D]. 西安:西安电子科技大学, 2018. WEI W Q. Study on electromagnetic imaging of tumor applying to radiomics[D]. Xi'an:Xidian University, 2018 (in Chinese).
[73] BANDERALI U, LEANZA L, ESKANDARI N, et al. Potassium and chloride ion channels in cancer:A novel paradigm for cancer therapeutics[M]//Reviews of Physiology, Biochemistry and Pharmacology. Cham:Springer International Publishing, 2021:135-155.
[74] WHICHER J R, MACKINNON R. Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism[J]. Science, 2016, 353(6300):664-669.
[75] SHARMA S K, VIJAY S, GORE S, et al. Measuring cellular ion transport by magnetoencephalography[J]. ACS Omega, 2020, 5(8):4024-4031.
[76] YANG W L, LU Z, BAST R C. The role of biomarkers in the management of epithelial ovarian cancer[J]. Expert Review of Molecular Diagnostics, 2017, 17(6):577-591.
[77] JOHNSON C, ADOLPHI N L, BUTLER K L, et al. Magnetic relaxometry with an atomic magnetometer and SQUID sensors on targeted cancer cells[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(17):2613-2619.
[78] BASKIN D S, SHARPE M A, NGUYEN L, et al. Case report:End-stage recurrent glioblastoma treated with a new noninvasive non-contact oncomagnetic device[J]. Frontiers in Oncology, 2021, 11:708017.
[79] 李定忠, 傅松涛, 李秀章. 关于经络实质的探讨:关于经络的理论与临床应用研究之三[J]. 中国针灸, 2005, 25(1):53-59. LI D Z, FU S T, LI X Z. Study on theory and clinical application of meridians (Ⅲ)[J]. Chinese Acupuncture & Moxibustion, 2005, 25(1):53-59 (in Chinese).
[80] DHOND R P, WITZEL T, HÄMÄLÄINEN M, et al. Spatiotemporal mapping the neural correlates of acupuncture with MEG[J]. Journal of Alternative and Complementary Medicine, 2008, 14(6):679-688.
[81] WITZEL T, NAPADOW V, KETTNER N W, et al. Differences in cortical response to acupressure and electroacupuncture stimuli[J]. BMC Neuroscience, 2011, 12:73.
[82] ASGHAR A U R, JOHNSON R L, WOODS W, et al. Oscillatory neuronal dynamics associated with manual acupuncture:A magnetoencephalography study using beamforming analysis[J]. Frontiers in Human Neuroscience, 2012, 6:303.
[83] YOU Y B, BAI L J, DAI R W, et al. Altered hub configurations within default mode network following acupuncture at ST36:A multimodal investigation combining fMRI and MEG[J]. PLoS One, 2013, 8(5):e64509.
[84] 周万松. 磁疗的发展与现状[J]. 人民军医, 2002, 45(10):612-614. ZHOU W S. Development and present situation of magnetic therapy[J]. People's Military Surgeon, 2002, 45(10):612-614 (in Chinese).
[85] 高鹏, 丛竹凤. 现代磁疗技术在肿瘤治疗中的应用进展[J]. 山东中医杂志, 2012, 31(10):772-774. GAO P, CONG Z F. Application progress of modern magnetic therapy technology in tumor treatment[J]. Shandong Journal of Traditional Chinese Medicine, 2012, 31(10):772-774 (in Chinese).
[86] 吴闽枫. 磁疗的治疗技术和方法[J]. 药物与人, 2014, 27(7):310. WU M F. Therapeutic techniques and methods of magnetic therapy[J]. Medicine & People, 2014, 27(7):310 (in Chinese).
[87] 闾坚强, 韩星海, 徐美娟, 等. 磁疗磁场分布测量及剂量表达方法[J]. 中国临床康复, 2006, 10(29):112-114. LU J Q, HAN X H, XU M J, et al. Measurement of magnetic field distribution and expression of dosage in magnetic treatment[J]. Chinese Journal of Clinical Rehabilitation, 2006, 10(29):112-114 (in Chinese).
[88] SANSOM M S P, SHRIVASTAVA I H, BRIGHT J N, et al. Potassium channels:Structures, models, simulations[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2002, 1565(2):294-307.
[89] WEN L P, ZHANG X Q, TIAN Y, et al. Quantum-confined superfluid:From nature to artificial[J]. Science China Materials, 2018, 61(8):1027-1032.
[90] 柴大敏, 向青, 陶仪声, 等. 空间环境对植物影响的研究进展[J]. 科技导报, 2007, 25(1):38-42. CHAI D M, XIANG Q, TAO Y S, et al. Progress on the effect on space environment on plant[J]. Science & Technology Review, 2007, 25(1):38-42 (in Chinese).
[91] XU C X, YIN X, LV Y, et al. A near-null magnetic field affects cryptochrome-related hypocotyl growth and flowering in Arabidopsis[J]. Advances in Space Research, 2012, 49(5):834-840.
[92] 郭苇, 方志财, 黄继荣. 磁生物学在模式植物拟南芥中的研究进展[J]. 生命的化学, 2019, 39(5):897-902. GUO W, FANG Z C, HUANG J R. Progress of magnetobiological study on the model plant Arabidopsis thaliana[J]. Chemistry of Life, 2019, 39(5):897-902 (in Chinese).
[93] BLAKEMORE R. Magnetotactic bacteria[J]. Science, 1975, 190(4212):377-379.
[94] ENDRES C S, PUTMAN N F, ERNST D A, et al. Multi-modal homing in sea turtles:Modeling dual use of geomagnetic and chemical cues in island-finding[J]. Frontiers in Behavioral Neuroscience, 2016, 10:19.
[95] YAN M M, ZHANG L, CHENG Y X, et al. Effect of a near-zero magnetic field on development and flight of oriental armyworm (Mythimna separata)[J]. Journal of Integrative Agriculture, 2021, 20(5):1336-1345.
[96] VAN HUIZEN A V, MORTON J M, KINSEY L J, et al. Weak magnetic fields alter stem cell-mediated growth[J]. Science Advances, 2019, 5(1):eaau7201.
[97] BRYSIEWICZ A, FORMICKI K. The effect of static magnetic field on melanophores in the sea trout (Salmo trutta m. trutta Linnaeus, 1758) embryos and larvae[J]. Italian Journal of Animal Science, 2019, 18(1):1431-1437.
[98] 强智明, 马保吉, 王瑞峰, 等. 磁场对电化学反应中电解液微观扩散特性影响的分子动力学研究[J]. 分子科学学报, 2019, 35(1):70-76. QIANG Z M, MA B J, WANG R F, et al. The influence of magnetic field on microcosmic diffusion characteristics of electrolyte in electrochemical reaction[J]. Journal of Molecular Science, 2019, 35(1):70-76 (in Chinese).
[99] 蔡新景, 李博, 王新新, 等. 外部磁场对低气压氩气等离子体电子输运特性的影响[J]. 中国电机工程学报, 2016, 36(22):6286-6293. CAI X J, LI B, WANG X X, et al. Effect of external magnetic field on electron transport properties of low pressure argon plasmas[J]. Proceedings of the CSEE, 2016, 36(22):6286-6293 (in Chinese).
[100] 黄小龙, 王立军, 贾申利, 等. 纵向磁场和外部横向磁场共同作用下真空电弧偏移与阳极偏烧现象的仿真研究[J]. 中国电机工程学报, 2014, 34(6):941-946. HUANG X L, WANG L J, JIA S L, et al. Simulation research of deflection phenomenon of vacuum arc and anode erosion under the combined action of axial magnetic field and external transverse magnetic field[J]. Proceedings of the CSEE, 2014, 34(6):941-946 (in Chinese).
[101] CICHON N, BIJAK M, SYNOWIEC E, et al. Modulation of antioxidant enzyme gene expression by extremely low frequency electromagnetic field in post-stroke patients[J]. Scandinavian Journal of Clinical and Laboratory Investigation, 2018, 78(7-8):626-631.
[102] RAVERA S, REPACI E, MORELLI A, et al. Electromagnetic field of extremely low frequency decreased adenylate kinase activity in retinal rod outer segment membranes[J]. Bioelectrochemistry, 2004, 63(1-2):317-320.
[103] PIACENTINI M P, FRATERNALE D, PIATTI E, et al. Senescence delay and change of antioxidant enzyme levels in Cucumis sativus L. etiolated seedlings by ELF magnetic fields[J]. Plant Science, 2001, 161(1):45-53.
[104] 何磊, 胡斌. 有机自旋光电子学的基本过程[J]. 中国科学:化学, 2013, 43(4):375-397. HE L, HU B. Fundamental processes in organic spintroncis[J]. Scientia Sinica (Chimica), 2013, 43(4):375-397 (in Chinese).
[105] AWASTHI K, MIZOGUCHI M, IIMORI T, et al. Magnetic field effect on fluorescence in a mixture of N-ethylcarbazole and dimethyl terephthalate in a polymer film in the presence of electric fields[J]. The Journal of Physical Chemistry A, 2008, 112(19):4432-4436.
[106] ITO F, IKOMA T, AKIYAMA K, et al. Carrier generation process on photoconductive polymer films as studied by magnetic field effects on the charge-transfer fluorescence and photocurrent[J]. The Journal of Physical Chemistry B, 2005, 109(18):8707-8717.
[107] LAGROIX F, GUYODO Y. A new tool for separating the magnetic mineralogy of complex mineral assemblages from low temperature magnetic behavior[J]. Frontiers in Earth Science, 2017, 5:61.
[108] 李泳泉, 刘建忠, 欧阳自远, 等. 月球磁场与月球演化[J]. 地球物理学进展, 2005, 20(4):1003-1008. LI Y Q, LIU J Z, OUYANG Z Y, et al. Lunar magnetism and its evolution[J]. Progress in Geophysics, 2005, 20(4):1003-1008 (in Chinese).
[109] RICHMOND N C, HOOD L L, HALEKAS J S, et al. Correlation of a strong lunar magnetic anomaly with a high-albedo region of the Descartes Mountains[J]. Geophysical Research Letters, 2003, 30(7):1395-1398.
文章导航

/