[1] HUNSAKER J C, WILSON E B. Report on behavior of aeroplanes in gusts:NACA-TR-1[R]. Washington, D.C.:NASA, 1917.
[2] HOUBOLT J C. Atmospheric turbulence[J]. AIAA Journal, 1973, 11(4):421-437.
[3] 沈强, 沈文武. 一种新的预报晴空湍流综合算法[J]. 气象与减灾研究, 2009, 32(2):44-49. SHEN Q, SHEN W W. A new synthesis algorithm for clear air turbulence forecast[J]. Meteorology and Disaster Reduction Research, 2009, 32(2):44-49(in Chinese).
[4] DISNEY T E. C-5A active load alleviation system[J]. Journal of Spacecraft and Rockets, 1977, 14(2):81-86.
[5] JOHNSTON J F. Accelerated development and flight evaluation of active controls concepts for subsonic transport aircraft. Volume 1:Load alleviation/extended span development and flight tests:NASA-CR-159097[R]. Washington, D.C.:NASA, 1979.
[6] WYKES J, BORLAND C, KLEPL M, et al. Design and development of a structural mode control system:NASA/CR-1977-143846[R]. Washington, D.C.:NASA, 1977.
[7] BRITT R, VOLK J, DREIM D, et al. Aeroservoelastic characteristics of the B-2 bomber and implications for future large aircraft:ADP010486[R]. Virginia:Defense Technical Information Center, 1999.
[8] REGAN C, JUTTE C. Survey of applications of active control technology for gust alleviation and new challenges for lighter-weight aircraft:NASA/TM-2012-216008[R]. Washington, D.C.:NASA, 2012.
[9] HOBLIT F M. Gust loads on aircraft:Concepts and applications[M]. Reston:AIAA, 1988:1-14.
[10] ROSKAM J, DUSTO A. A method for predicting longitudinal stability derivatives of rigid and elastic airplanes[J]. Journal of Aircraft, 1969, 6(6):525-531.
[11] RODDEN W P. Dihedral effect of a flexible wing[J]. Journal of Aircraft, 1965, 2(5):368-373.
[12] LIVNE E. Aircraft active flutter suppression:State of the art and technology maturation needs[J]. Journal of Aircraft, 2017, 55(1):410-452.
[13] RODDEN W P, GIESING J P. Application of oscillatory aerodynamic theory to estimation of dynamic stability derivatives[J]. Journal of Aircraft, 1970, 7(3):272-275.
[14] 杨超. 飞行器气动弹性原理[M]. 2版. 北京:北京航空航天大学出版社, 2016:1-164. YANG C. Aeroelastic principle of aircraft[M]. 2nd ed. Beijing:Beijing University of Aeronautics & Astronautics Press, 2016:1-164(in Chinese).
[15] BISPLINGHOFF R L, ASHLEY H. Principles of aeroelasticity[M]. New York:Dover Publications, 2013:18-70.
[16] MILNE R D. Dynamics of the deformable aeroplane. Part 1. The equations of motion. Part 2. A study of the trim state and longitudinal stability of the slender integrated aeroplane configuration[R]. London:Aeronautical Research Council, 1964.
[17] WASZAK M, BUTTRILL C, SCHMIDT D. Modeling and model simplification of aeroelastic vehicles:An overview:NASA-TM-107691[R]. Washington,D.C:NASA, 1992.
[18] WASZAK M R, SCHMIDT D K. Flight dynamics of aeroelastic vehicles[J]. Journal of Aircraft, 1988, 25(6):563-571.
[19] SCHMIDT D K, RANEY D L. Modeling and simulation of flexible flight vehicles[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(3):539-546.
[20] BUTTRILL C, ARBUCKLE P, ZEILER T. Nonlinear simulation of a flexible aircraft in maneuvering flight[C]//Flight Simulation Technologies Conference. Reston:AIAA, 1987.
[21] KOKOTOVIĆ P V, O'MALLAY R E Jr, SANNUTI P. Singular perturbations and order reduction in control theory-An overview[J]. Automatica, 1976, 12(2):123-132.
[22] MEIROVITCH L, TUZCU I. Integrated approach to flight dynamics and aeroservoelasticity of whole flexible aircraft-part I:system modeling[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2002.
[23] MEIROVITCH L, TUZCU I. Integrated approach to the dynamics and control of maneuvering flexible aircraft:NASA/CR-2003-211748[R]. Washington, D.C.:NASA, 2003.
[24] MEIROVITCH L, TUZCU I. Time simulations of the response of maneuvering flexible aircraft[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5):814-828.
[25] MEIROVITCH L, TUZCU I. Unified theory for the dynamics and control of maneuvering flexible aircraft[J]. AIAA Journal, 2004, 42(4):714-727.
[26] NOLL T, ISHMAEL S, HENWOOD B, et al. Technical findings, lessons learned, and recommendations resulting from the helios prototype vehicle mishap:NASA/WBS-810031[R]. Washington, D.C.:NASA, 2007.
[27] HODGES D, DOWELL E. Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades:NASA TN D-7818[R]. Washington, D.C.:NASA, 1974.
[28] HODGES D H, ORMISTON R A, PETERS D A. On the nonlinear deformation geometry of Euler-Bernoulli beams:NASA-1566[R]. Washington, D.C.:NASA, 1980.
[29] HINNANT H E, HODGES D H. Nonlinear analysis of a cantilever beam[J]. AIAA Journal, 1988, 26(12):1521-1527.
[30] HODGES D H. A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams[J]. International Journal of Solids and Structures, 1990, 26(11):1253-1273.
[31] ATILGAN A R, HODGES D H. Unified nonlinear analysis for nonhomogeneous anisotropic beams withclosed cross sections[J]. AIAA Journal, 1991, 29(11):1990-1999.
[32] CESNIK C E S, HODGES D H, SUTYRIN V G. Cross-sectional analysis of composite beams including large initial twist and curvature effects[J]. AIAA Journal, 1996, 34(9):1913-1920.
[33] PATIL M, HODGES D, CESNIK C. Nonlinear aeroelastic analysis of aircraft with high-aspect-ratio wings[C]//39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston:AIAA, 1998.
[34] PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelastic analysis of complete aircraft in subsonic flow[J]. Journal of Aircraft, 2000, 37(5):753-760.
[35] PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft[J]. Journal of Aircraft, 2001, 38(1):88-94.
[36] PATIL M J, HODGES D H. Flight dynamics of highly flexible flying wings[J]. Journal of Aircraft, 2006, 43(6):1790-1799.
[37] PATIL M, TAYLOR D. Gust response of highly flexible aircraft[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 14th AIAA/ASME/AHS Adaptive Structures Conference. Reston:AIAA, 2006.
[38] PATIL M. Nonlinear gust response of highly flexible aircraft[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2007.
[39] HOUBOLT J C. Design manual for vertical gusts based on power spectral techniques:AFFDL-TR-70-106[R]. Princeton:Aeronautical Research Associates of Princeton Inc, 1970.
[40] 金长江, 肖业伦. 大气扰动中的飞行原理[M]. 北京:国防工业出版社, 1992:11-70. JIN C J, XIAO Y L. Flight principle in atmospheric disturbance[M]. Beijing:National Defense Industry Press, 1992:11-70(in Chinese).
[41] FULLER J R. Evolution of airplane gust loads design requirements[J]. Journal of Aircraft, 1995, 32(2):235-246.
[42] FAA. Federal aviation regulations, Part25:airworthiness standards:transport category airplanes, Section 341:Gust and turbulence loads[S]. Washington, D.C.:Department of Transportation, Federal Aviation Administration, 1996.
[43] EASA. Certification specifications for large aeroplanes:CS-25[S]. Europe:EASA, 2009.
[44] CAA. Joint airworthiness requirements, JAR-25:Large aeroplanes[S]. Cheltenham:Civil Aviation Authorities, 1994.
[45] 中国民用航空局. CCAR-25-R4中国民用航空规章第25部:运输类飞机适航标准[S]. 北京:中国民用航空局, 2016. Civil Aviation Administration of China. CCAR-25-R4 China Civil Aviation Regulations Part 25:Airworthiness standards for transport aircraft[S]. Beijing:Civil Aviation Administration of China, 2016(in Chinese).
[46] FULLER J, FULLER J. Evolution and future development of airplane gust loads design requirements[C]//1997 World Aviation Congress. Reston:AIAA, 1997.
[47] WU Z, CAO Y, ISMAIL M. Gust loads on aircraft[J]. The Aeronautical Journal, 2019, 123(1266):1216-1274.
[48] NOBACK R. Comparison of discrete and continuous gust methods for airplane design loads determination[J]. Journal of Aircraft, 1986, 23(3):226-231.
[49] JONES J G. Modelling of gusts and wind shear for aircraft assessment and certification[J]. Proceedings of the Indian Academy of Sciences Section C:Engineering Sciences, 1980, 3(1):1-30.
[50] YANG Y, YANG C, WU Z G. Aeroelastic dynamic response of elastic aircraft with consideration of two-dimensional discrete gust excitation[J]. Chinese Journal of Aeronautics, 2020, 33(4):1228-1241.
[51] 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015, 36(4):1011-1033. YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1011-1033(in Chinese).
[52] 杨超, 杨澜, 谢长川. 大展弦比柔性机翼气动弹性分析中的气动力方法研究进展[J]. 空气动力学学报, 2018, 36(6):1009-1018, 983. YANG C, YANG L, XIE C C. Development of aerodynamic methods in aeroelastic analysis for high aspect ratio flexible wings[J]. Acta Aerodynamica Sinica, 2018, 36(6):1009-1018, 983(in Chinese).
[53] WRIGHT J R, COOPER J E. Introduction to aircraft aeroelasticity and loads[M]. Chichester:John Wiley, 2007:153-165.
[54] PETERS D A, KARUNAMOORTHY S, CAO W M. Finite state induced flow models. I-Two-dimensional thin airfoil[J]. Journal of Aircraft, 1995, 32(2):313-322.
[55] PETERS D A, HE C J. Finite state induced flow models. II-Three-dimensional rotor disk[J]. Journal of Aircraft, 1995, 32(2):323-333.
[56] CESNIK C, SU W H. Nonlinear aeroelastic modeling and analysis of fully flexible aircraft[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2005.
[57] SU W H, CESNIK C E S. Dynamic response of highly flexible flying wings[J]. AIAA Journal, 2011, 49(2):324-339.
[58] SU W H, CESNIK C E S. Nonlinear aeroelasticity of a very flexible blended-wing-body aircraft[J]. Journal of Aircraft, 2010, 47(5):1539-1553.
[59] CESNIK C, SU W H. Nonlinear aeroelastic simulation of X-HALE:A very flexible UAV[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011.
[60] CESNIK C E S, SENATORE P J, SU W H, et al. X-HALE:A very flexible unmanned aerial vehicle for nonlinear aeroelastic tests[J]. AIAA Journal, 2012, 50(12):2820-2833.
[61] KATZ J, PLOTKIN A. Low-speed aerodynamics[M]. 2nd ed. Cambridge:Cambridge University Press, 2001:369-448.
[62] RODDEN W P. MSC/NASTRAN aeroelastic analysis:User's guide[M]. Version 68. Los Angeles:MacNeal-Schwendler Corporation, 1994.
[63] ZAERO Z. Theoretical manual[M]. Version 8.2. Scottsdale:ZONA Technology, 2008.
[64] ALBANO E, RODDEN W P. A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows[J]. AIAA Journal, 1969, 7(2):279-285.
[65] KALMAN T P, RODDEN W P, GIESING J P. Application of the doublet-lattice method to nonplanar configurations in subsonic flow[J]. Journal of Aircraft, 1971, 8(6):406-413.
[66] GIESING J, KALMAN T. Subsonic unsteady aerodynamics for general configurations[C]//10th Aerospace Sciences Meeting. Reston:AIAA, 1972.
[67] RODDEN W P, TAYLOR P F, MCINTOSH JR S C. Further refinement of the subsonic doublet-lattice method[J]. Journal of Aircraft, 1998, 35(5):720-727.
[68] BAKER M L, RODDEN W P. Improving the convergence of the doublet-lattice method through tip corrections[J]. Journal of Aircraft, 2001, 38(4):772-776.
[69] MURUA J, PALACIOS R, GRAHAM J M R. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics[J]. Progress in Aerospace Sciences, 2012, 55:46-72.
[70] LIU Y, XIE C C, YANG C, et al. Gust response analysis and wind tunnel test for a high-aspect ratio wing[J]. Chinese Journal of Aeronautics, 2016, 29(1):91-103.
[71] WANG Z C, CHEN P C, LIU D D, et al. Time domain nonlinear aeroelastic analysis for HALE wings[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 14th AIAA/ASME/AHS Adaptive Structures Conference. Reston:AIAA, 2006.
[72] WANG Z C, CHEN P C, LIU D, et al. Nonlinear aeroelastic analysis for A HALE wing including effects of gust and flow separation[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2007.
[73] WANG Z, CHEN P C, LIU D D, et al. Nonlinear-aerodynamics/nonlinear-structure interaction methodology for a high-altitude long-endurance wing[J]. Journal of Aircraft, 2010, 47(2):556-566.
[74] BHASIN S, CHEN P, WANG Z C, et al. Dynamic nonlinear aeroelastic analysis of the joined wing configuration[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2012.
[75] 杨国伟. 计算气动弹性若干研究进展[J]. 力学进展, 2009, 39(4):406-420. YANG G W. Recent progress on computational aeroelasticity[J]. Advances in Mechanics, 2009, 39(4):406-420(in Chinese).
[76] 顾宁. 基于CFD的机翼阵风响应及减缓计算[D]. 南京:南京航空航天大学, 2013:1-4. GU N. CFD-based gust response and alleviation research of aircraft wing[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013:1-4(in Chinese).
[77] PARAMESWARAN V, BAEDER J D. Indicial aerodynamics in compressible flow-direct computational fluid dynamic calculations[J]. Journal of Aircraft, 1997, 34(1):131-133.
[78] SINGH R, BAEDER J D. Direct calculation of three-dimensional indicial lift response using computational fluid dynamics[J]. Journal of Aircraft, 1997, 34(4):465-471.
[79] 詹浩, 钱炜祺. 薄翼型阵风响应的数值模拟[J]. 航空学报, 2007, 28(3):527-530. ZHAN H, QIAN W Q. Numerical simulation of gust response for thin airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3):527-530(in Chinese).
[80] 许晓平, 祝小平, 周洲, 等. 基于CFD方法的阵风响应与阵风减缓研究[J]. 西北工业大学学报, 2010, 28(6):818-823. XU X P, ZHU X P, ZHOU Z, et al. Further exploring CFD-based gust response and gust alleviation[J]. Journal of Northwestern Polytechnical University, 2010, 28(6):818-823(in Chinese).
[81] 顾宁, 陆志良, 郭同庆, 等. 阵风响应及减缓的非定常数值模拟[J]. 航空计算技术, 2012, 42(3):49-53. GU N, LU Z L, GUO T Q, et al. Gust response and alleviation analysis of airfoil[J]. Aeronautical Computing Technique, 2012, 42(3):49-53(in Chinese).
[82] 赵炜, 黄江流, 张顺家, 等. 耦合滑流太阳能无人机阵风响应特性研究[J]. 飞行力学, 2020, 38(3):11-17. ZHAO W, HUANG J L, ZHANG S J, et al. Research on gust response characteristics of solar-powered UAV coupling with propeller slipstream[J]. Flight Dynamics, 2020, 38(3):11-17(in Chinese).
[83] 陈刚, 李跃明. 非定常流场降阶模型及其应用研究进展与展望[J]. 力学进展, 2011, 41(6):686-701. CHEN G, LI Y M. Advances and prospects of the reduced order model for unsteady flow and its application[J]. Advances in Mechanics, 2011, 41(6):686-701(in Chinese).
[84] 师妍, 万志强, 吴志刚, 等. 基于气动力降阶的弹性飞机阵风响应仿真分析及验证[J]. 航空学报, 2022, 43(1):125474. SHI Y, WAN Z Q, WU Z G, et al. Gust response analysis and verification of elastic aircraft based on nonlinear aerodynamic reduced-order model[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1):125474(in Chinese).
[85] 程昱. 阵风载荷分析方法研究和减缓主动控制的初步讨论[D]. 北京:北京航空航天大学, 2014:20-24. CHENG Y. Study on gust analysis method and preliminary discussion on active control of slowing down[D]. Beijing:Beihang University, 2014:20-24(in Chinese).
[86] KARPEL M, MOULIN B, PRESENTE E, et al. Dynamic gust loads analysis for transport aircraft with nonlinear control effects[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,16th AIAA/ASME/AHS Adaptive Structures Conference, 10th AIAA Non-Deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Special-ists Conference. Reston:AIAA, 2008.
[87] AZOULAY D, KARPEL M. Characterization of methods for computation of aeroservoelastic systems response to gust excitation[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2006.
[88] KARPEL M. Time-domain aeroservoelastic modeling using weighted unsteady aerodynamic forces[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(1):30-37.
[89] ZOLE A, KARPEL M. Continuous gust response and sensitivity derivatives using state-space models[J]. Journal of Aircraft, 1994, 31(5):1212-1214.
[90] KARPEL M, MOULIN B, ANGUITA L, et al. Aeroservoelastic gust response analysis for the design of transport aircrafts[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston:AIAA, 2004.
[91] 徐敏, 安效民, 陈士橹. 一种CFD/CSD耦合计算方法[J]. 航空学报, 2006, 27(1):33-37. XU M, AN X M, CHEN S L. CFD/CSD couping numerical computational methodology[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(1):33-37(in Chinese).
[92] HALLISSY B, CESNIK C. High-fidelity aeroelastic analysis of very flexible aircraft[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 19th AIAA/ASME/AHS Adaptive Structures Conference. Reston:AIAA, 2011.
[93] GUO D, XU M, CHEN S L. Nonlinear gust response analysis of free flexible aircraft[J]. International Journal of Intelligent Systems and Applications, 2013, 5(2):1-15.
[94] PALACIOS R, MURUA J, COOK R. Structural and aerodynamic models in nonlinear flight dynamics of very flexible aircraft[J]. AIAA Journal, 2010, 48(11):2648-2659.
[95] 聂雪媛, 杨国伟. 基于CFD降阶模型的阵风减缓主动控制研究[J]. 航空学报, 2015, 36(4):1103-1111. NIE X Y, YANG G W. Gust alleviation active control based on CFD reduced-order models[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1103-1111(in Chinese).
[96] ETKIN B. Turbulent wind and its effect on flight[J]. Journal of Aircraft, 1981, 18(5):327-345.
[97] 吴森堂, 费玉华. 飞行控制系统[M]. 北京:北京航空航天大学出版社, 2005:392-419. WU S T, FEI Y H. Flight control[M]. Beijing:Beijing University of Aeronautics & Astronautics Press, 2005:392-419(in Chinese).
[98] 张京杭. 飞翼布局飞机阵风减缓方法研究[D]. 北京:北京航空航天大学, 2020:25-27. ZHANG J H. Study on gust alleviation for flying wing aircraft[D]. Beijing:Beihang University, 2020:25-27(in Chinese).
[99] 高洁, 王立新, 周堃. 大展弦比飞翼构型飞机阵风载荷减缓控制[J]. 北京航空航天大学学报, 2008, 34(9):1076-1079. GAO J, WANG L X, ZHOU K. Gust load alleviation control of aircraft with large ratio flying wing configuration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(9):1076-1079(in Chinese).
[100] 张波, 祝小平, 周洲, 等. 基于纵向直接力控制的飞翼布局无人机紊流减缓[J]. 西北工业大学学报, 2014, 32(5):675-681. ZHANG B, ZHU X P, ZHOU Z, et al. Turbulence alleviation of unmanned aerial vehicle with fly wing configuration based on longitudinal direct force control[J]. Journal of Northwestern Polytechnical University, 2014, 32(5):675-681(in Chinese).
[101] WU Z G, CHEN L, YANG C. Study on gust alleviation control and wind tunnel test[J]. Science China Technological Sciences, 2013, 56(3):762-771.
[102] 杨俊斌, 吴志刚, 戴玉婷, 等. 飞翼布局飞机阵风减缓主动控制风洞试验[J]. 北京航空航天大学学报, 2017, 43(1):184-192. YANG J B, WU Z G, DAI Y T, et al. Wind tunnel test of gust alleviation active control for flying wing configuration aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1):184-192(in Chinese).
[103] 周宜涛, 杨阳, 吴志刚, 等. 大展弦比无人机平台的阵风减缓飞行试验[J]. 航空学报, 2022, 43(6):526126. ZHOU Y T, YANG Y, WU Z G, et al. Flight test for gust alleviation on a high aspect ratio UAV platform[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6):526126(in Chinese).
[104] GANGSAAS D, LY U. Appilication of a modified linear quadratic Gaussian design to active control of a transport airplane[C]//Guidance and Control Conference. Reston:AIAA, 1979.
[105] GANGSAAS D, LY U, NORMAN D. Practical gust load alleviation and flutter suppression control laws based on a LQG methodology[C]//19th Aerospace Sciences Meeting. Reston:AIAA, 1981.
[106] 吴志刚, 杨超. 主动气动弹性机翼的颤振主动抑制与阵风减缓研究[J]. 机械强度, 2003, 25(1):32-35, 38. WU Z G, YANG C. Investigation on active flutter suppression and gust alleviation for an active aeroelastic wing[J]. Journal of Mechanical Strength, 2003, 25(1):32-35, 38(in Chinese).
[107] 张军红, 李振水, 詹孟权, 等. LQG控制理论在阵风载荷减缓系统中的应用[J]. 飞行力学, 2007, 25(2):61-64. ZHANG J H, LI Z S, ZHAN M Q, et al. Application of LQG theory to gust load alleviation system[J]. Flight Dynamics, 2007, 25(2):61-64(in Chinese).
[108] 张军红, 李振水, 詹孟权, 等. 阵风载荷减缓系统LQG/LTR多变量控制器设计[J]. 飞行力学, 2007, 25(4):33-36. ZHANG J H, LI Z S, ZHAN M Q, et al. LQG/LTR multivariable controller design for a gust load alleviation system[J]. Flight Dynamics, 2007, 25(4):33-36(in Chinese).
[109] LIU X, SUN Q. Improved LQG method for active gust load alleviation[J]. Journal of Aerospace Engineering, 2017, 30(4):04017006.
[110] VARTIO E, SHAW E, VETTER T. Gust load alleviation flight control system design for a SensorCraft vehicle[C]//26th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2008.
[111] DILLSAVER M, CESNIK C, KOLMANOVSKY I. Gust load alleviation control for very flexible aircraft[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2011.
[112] AOUF N, BOULET B, BOTEZ R. Robust gust load alleviation for a flexible aircraft[J]. Canadian Aeronautics and Space Journal, 2000, 46(3):131-139.
[113] 傅军, 万婧, 艾剑良. 弹性飞机阵风缓和鲁棒控制研究[J]. 复旦学报(自然科学版), 2016, 55(3):329-335. FU J, WAN J, AI J L. Robust control of flexible aircraft for gust alleviation[J]. Journal of Fudan University (Natural Science), 2016, 55(3):329-335(in Chinese).
[114] WILDSCHEK A, MAIER R, HROMCIK M, et al. Hybrid controller for gust load alleviation and ride comfort improvement using direct lift control flaps[C]//Proceedings of Third European Conference for Aerospace Sciences. Paris:EUCASS, 2009.
[115] COOK R G, PALACIOS R, GOULART P. Robust gust alleviation and stabilization of very flexible aircraft[J]. AIAA Journal, 2013, 51(2):330-340.
[116] YAGIL L, RAVEH D E, IDAN M. Deformation control of highly flexible aircraft in trimmed flight and gust encounter[J]. Journal of Aircraft, 2017, 55(2):829-840.
[117] LIU X, SUN Q. Gust load alleviation with robust control for a flexible wing[J]. Shock and Vibration, 2016, 2016:1060574.
[118] 刘伏虎, 马晓平, 张子健. 飞翼布局无人机阵风减缓主动控制研究[J]. 机械科学与技术, 2015, 34(10):1631-1635. LIU F H, MA X P, ZHANG Z J. Active control of gust alleviation for flying wing configuration UAV[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(10):1631-1635(in Chinese).
[119] ZENG J, KUKREJA S L, MOULIN B. Experimental model-based aeroelastic control for flutter suppression and gust-load alleviation[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(5):1377-1390.
[120] HAGHIGHAT S, LIU H H T, MARTINS J R R A. Model-predictive gust load alleviation controller for a highly flexible aircraft[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(6):1751-1766.
[121] WANG Y N, WYNN A, PALACIOS R. Model-predictive control of flexible aircraft dynamics using nonlinear reduced-order models[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2016.
[122] GIESSELER H G, KOPF M, VARUTTI P, et al. Model predictive control for gust load alleviation[C]//IFAC Nonlinear Model Predictive Control Conference, 2012, 45(17):27-32.
[123] BARZGARAN B, QUENZER J D, MESBAHI M, et al. Real-time model predictive control for gust load alleviation on an aeroelastic wind tunnel test article[C]//AIAA Scitech 2021 Forum. Reston:AIAA, 2021.
[124] LIU X, SUN Q, COOPER J E. LQG based model predictive control for gust load alleviation[J]. Aerospace Science and Technology, 2017, 71:499-509.
[125] 陈洋, 王正杰, 郭士钧. 多控制面柔性翼飞行器阵风减缓研究[J]. 北京理工大学学报, 2017, 37(12):1229-1234, 1240. CHEN Y, WANG Z J, GUO S J. Gust alleviation of flexible wing aircraft with multiple control surfaces[J]. Transactions of Beijing Institute of Technology, 2017, 37(12):1229-1234, 1240(in Chinese).
[126] 刘璟龙, 胡陟, 章卫国, 等. 基于模型预测及控制分配的阵风缓和研究[J]. 西北工业大学学报, 2017, 35(2):259-266. LIU J L, HU Z, ZHANG W G, et al. A MPC and control allocation method for gust load alleviation[J]. Journal of Northwestern Polytechnical University, 2017, 35(2):259-266(in Chinese).
[127] FERRIER Y, NGUYEN N T, TING E, et al. Active gust load alleviation of high-aspect ratio flexible wing aircraft[C]//2018 AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2018.
[128] CAPELLO E, GUGLIERI G, QUAGLIOTTI F. A comprehensive robust adaptive controller for gust load alleviation[J]. The Scientific World Journal, 2014, 2014:609027.
[129] LIU X X, YU L, MA Q Y, et al. Gust alleviation controller for elastic aircraft based on L1 adaptive control[C]//2017 Chinese Automation Congress (CAC). Piscataway:IEEE Press, 2017:5382-5385.
[130] WILDSCHEK A, MAIER R, HOFFMANN F, et al. Active wing load alleviation with an adaptive feed-forward control algorithm[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2006.
[131] ZHAO Y H, YUE C Y, HU H Y. Gust load alleviation on a large transport airplane[J]. Journal of Aircraft, 2016, 53(6):1932-1946.
[132] ZENG J, MOULIN B, DE CALLAFON R, et al. Adaptive feedforward control for gust load alleviation[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(3):862-872.
[133] GILI P, RUOTOLO R, GILI P, et al. A neural gust alleviator for a non-linear combat aircraft model[C]//Guidance, Navigation, and Control Conference. Reston:AIAA, 1997.
[134] SHAO K, WU Z G, YANG C, et al. Theoretical and experimental study of gust response alleviation using neuro-fuzzy control law for a flexible wing model[J]. Chinese Journal of Aeronautics, 2010, 23(3):290-297.
[135] SHAO K, WU Z G, YANG C, et al. Design of an adaptive gust response alleviation control system:simulations and experiments[J]. Journal of Aircraft, 2010, 47(3):1022-1029.
[136] SHAO K, YANG C, WU Z G, et al. Design of a gust-response-alleviation online control system based on neuro-fuzzy theory[J]. Journal of Aircraft, 2013, 50(2):599-609.
[137] PEREIRA P, ALMEIDA L, SULEMAN A, et al. Aeroelastic scaling and optimization of a joined-wing aircraft concept[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2007.
[138] TANG B, WU Z G, YANG C. Aeroelastic scaling laws for gust load alleviation control system[J]. Chinese Journal of Aeronautics, 2016, 29(1):76-90.
[139] 杨希明, 刘南, 郭承鹏, 等. 飞行器气动弹性风洞试验技术综述[J]. 空气动力学学报, 2018, 36(6):995-1008. YANG X M, LIU N, GUO C P, et al. A survey of aeroelastic wind tunnel test techonlogy of flight vehicles[J]. Acta Aerodynamica Sinica, 2018, 36(6):995-1008(in Chinese).
[140] GRANT B E. A method for measuring aerodynamic damping of helicopter rotors in forward flight[J]. Journal of Sound and Vibration, 1966, 3(3):407-421.
[141] TEUNISSEN H. An ejector-driven wind tunnel for the generation of turbulent flows with arbitrary mean velocity profile[C]//CASI/AIAA Subsonic Aero- and Hydro-Dynamics Meeting. Reston:AIAA, 1969.
[142] GRISSOM D, DEVENPORT W. Development and testing of a deterministic disturbance generator[C]//10th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA, 2004.
[143] RICCI S, SCOTTI A. Wind tunnel testing of an active controlled wing under gust excitation[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference, 10th AIAA Non-Deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Specialists Conference. Reston:AIAA, 2008.
[144] 楚龙飞, 刘晓燕, 吴志刚. 阵风减缓模型风洞试验的阵风发生器设计与应用[C]//第十一届全国空气弹性学术交流会会议论文集. 西安:中航工业第一飞机设计研究院, 2009:187-192. CHU L F, LIU X Y, WU Z G. Design and application of gust generator for wind tunnel test of gust mitigation model[C]//11th National Academic Exchange Conference on Aeroelasticity. Xi'an:AVIC The First Aircraft Institute, 2009:187-192(in Chinese).
[145] 刘晓燕, 吴志刚, 杨超, 等. 阵风发生器流场特性分析与试验验证[J]. 北京航空航天大学学报, 2010, 36(7):803-807. LIU X Y, WU Z G, YANG C, et al. Flow field analysis and experimental investigation on gust generator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7):803-807(in Chinese).
[146] 梁鉴, 唐建平, 杨远志, 等. FL-12风洞突风试验装置研制[J]. 实验流体力学, 2012, 26(3):95-100. LIANG J, TANG J P, YANG Y Z, et al. The development of gust generators in FL-12 wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3):95-100(in Chinese).
[147] 金华, 王辉, 张海酉, 等. FL-13风洞突风发生装置研究[J]. 空气动力学学报, 2016, 34(1):40-46. JIN H, WANG H, ZHANG H Y, et al. Investigation on gust response test apparatus in FL-13 wind tunnel[J]. Acta Aerodynamica Sinica, 2016, 34(1):40-46(in Chinese).
[148] 于金革, 杨希明, 陈宝, 等. FL-5风洞阵风发生器流场特性研究[C]//第十届全国流体力学学术会议论文摘要集. 杭州:中国力学学会流体力学专业委员会, 2018:237. YU J G, YANG X M, CHEN B, et al. Flow field characteristics of FL-5 wind tunnel gust generator[C]//Proceedings of the 10th National Conference on Fluid Mechanics. Hangzhou:Committee of Fluid Mechanics, Chinese Society of Mechanics, 2018:237(in Chinese).
[149] 刘南, 郭承鹏, 于金革. FL-5风洞阵风发生器数值模拟与风洞试验结果对比验证[C]//第四届全国非定常空气动力学学术会议论文集. 合肥:中国力学学会流固耦合力学专业委员会, 2018:111-112. LIU N, GUO C P, YU J G. Comparison and verification of FL-5 wind tunnel gust generator numerical simulation and wind tunnel test results[C]//Proceedings of the Fourth National Unsteady Aerodynamics Conference. Hefei:Committee of Fluid-Structure Coupling Mechanics, Chinese Society of Mechanics, 2018:111-112(in Chinese)
[150] BLCKNELL J, PARKER A G. A wind-tunnel stream oscillation apparatus[J]. Journal of Aircraft, 1972, 9(6):446-447.
[151] PARKER A G, BICKNELL J. Some measurements on dynamic stall[J]. Journal of Aircraft, 1974, 11(7):371-374.
[152] SIMMONS J M, PLATZER M F. Experimental investigation of incompressible flow past airfoils with oscillating jet flaps[J]. Journal of Aircraft, 1971, 8(8):587-592.
[153] GILMAN JR J, BENNETT R M. A wind-tunnel technique for measuring frequency-response functions for gust load analyses[J]. Journal of Aircraft, 1966, 3(6):535-540.
[154] BUELL D A. An experimental investigation of the velocity fluctuations behind oscillating vanes:NASA-TN-D-5543[R]. Washington, D.C.:NASA, 1969.
[155] REID C, WRESTLER C. An investigation of a device to oscillate a wind-tunnel airstream:NASA-TN-D-739[R]. Washington, D.C.:NASA, 1961.
[156] ALLEN N J, QUINN M. Development of a transonic gust rig for simulation of vertical gusts on half-models[C]//31 st AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston:AIAA, 2015.
[157] HAM N, BAUER P, LAWRENCE T. Wind tunnel generation of sinusoidal lateral and longitudinal gusts by circulation of twin parallel airfoils:ASRL-TR-174-3[R]. Washington, D.C.:NASA, 1974.
[158] 郭承鹏, 张颖, 刘南, 等. 高速风洞阵风载荷试验技术初探[C]//中国力学大会论文集(CCTAM 2019). 北京:中国力学学会, 2019:3908-3916. GUO C P, ZHANG Y, LIU N, et al. A study of high-speed wind tunnel gust load test technique[C]//CCTAM 2019. Beijing:Chinese Society of Mechanics, 2019:3908-3916(in Chinese).
[159] TANG D M, DOWELL E H. Response of a nonrotating rotor blade to lateral turbulence Part II:experiment[J]. Journal of Aircraft, 1995, 32(1):154-160.
[160] TANG D M, CIZMAS P G A, DOWELL E H. Experiments and analysis for a gust generator in a wind tunnel[J]. Journal of Aircraft, 1996, 33(1):139-148.
[161] 向正平, 戴玉婷, 黄广靖. 旋转开槽圆筒式阵风发生器流场特性数值模拟[J]. 空气动力学学报, 2019, 37(6):950-955. XIANG Z P, DAI Y T, HUANG G J. Numerical simulation of flow field characteristics about rotating slotted cylinder gust generator[J]. Acta Aerodynamica Sinica, 2019, 37(6):950-955(in Chinese).
[162] COLE S, GARCIA J. Past, present, and future capabilities of the transonic dynamics tunnel from an aeroelasticity perspective[C]//41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston:AIAA, 2000.
[163] 路波, 吕彬彬, 罗建国, 等. 跨声速风洞全模颤振试验技术[J]. 航空学报, 2015, 36(4):1086-1092. LU B, LYU B B, LUO J G, et al. Wind tunnel technique for transonic full-model flutter test[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1086-1092(in Chinese).
[164] SCOTT R, VETTER T, PENNING K, et al. Aeroservoelastic testing of a sidewall mounted free flying wind-tunnel model[C]//26th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2008.
[165] 杨俊斌, 吴志刚, 戴玉婷, 等. 飞翼布局飞机阵风减缓主动控制风洞试验[J]. 北京航空航天大学学报, 2017, 43(1):184-192. YANG J B, WU Z G, DAI Y T, et al. Wind tunnel test of gust alleviation active control for flying wing configuration aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1):184-192(in Chinese).
[166] REICHENBACH E, SHARMA V. Development of an innovative support system for SensorCraft model[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2011.
[167] PERRY III B. Qualitative comparison of calculated turbulence responses with wind-tunnel measurements for a DC-10 derivative wing with an active control system[C]//22nd Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 1981.