固体力学与飞行器总体设计

飞机阵风响应减缓技术综述

  • 杨超 ,
  • 邱祈生 ,
  • 周宜涛 ,
  • 吴志刚
展开
  • 北京航空航天大学 航空科学与工程学院, 北京 100191

收稿日期: 2022-04-30

  修回日期: 2022-06-01

  网络出版日期: 2022-10-12

Review of aircraft gust alleviation technology

  • YANG Chao ,
  • QIU Qisheng ,
  • ZHOU Yitao ,
  • WU Zhigang
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2022-04-30

  Revised date: 2022-06-01

  Online published: 2022-10-12

摘要

为降低阵风对飞机飞行性能与安全的影响,早期往往通过加强飞机结构来抵抗阵风干扰。从20世纪50年代开始,人们逐步发展了基于主动控制的阵风响应减缓技术,并成功应用于多个实际飞机型号,有效降低了阵风响应,提高了飞机的疲劳寿命和飞行品质。国内的相关研究起步较晚,在国产大飞机等项目的需求牵引下,阵风减缓的工程应用已提上日程。本文提出了飞机阵风减缓研究的总体技术路线,并按此路线梳理了以下技术的历史发展和研究现状:首先介绍了阵风减缓的基础数学模型,涉及飞机动力学模型、阵风模型、非定常气动力模型及阵风响应分析方法;其次从减缓控制机理和控制律设计两个方面分析了阵风减缓的设计方法;回顾了阵风减缓风洞试验和飞行试验及实际应用的具体案例;最后概述了阵风减缓研究的前沿进展并总结了亟需解决的关键技术问题,以期为该领域的科研和工程技术人员提供借鉴与帮助。

本文引用格式

杨超 , 邱祈生 , 周宜涛 , 吴志刚 . 飞机阵风响应减缓技术综述[J]. 航空学报, 2022 , 43(10) : 527350 -527350 . DOI: 10.7527/S1000-6893.2021.27350

Abstract

To reduce the impact of gust on aircraft flight performance and safety, the structure of the aircraft was often strengthened to resist gusts interference in the early days. Since the 1950s, the gust alleviation technology based on active control has been gradually developed and successfully applied to many practical aircrafts, effectively reducing the gust response and improving the fatigue life and flight quality of aircraft. Domestic related research started late, and the engineering application of gust alleviation has been put on the agenda due to the demand of domestic large aircraft projects. This paper puts forward the general technical route of aircraft gust alleviation, and summarizes the historical development and research status of the following technologies according to this route. Firstly, the basic mathematical models of gust alleviation are introduced, involving the aircraft dynamics model, gust model, unsteady aerodynamic model and gust response analysis method. Secondly, the design methods of gust alleviation are analyzed in terms of alleviation mechanism and control law design. The specific cases of gust alleviation wind tunnel test and flight test and practical applications are reviewed. Finally, the frontier progress of gust alleviation research is summarized and the key technical problems that need to be solved urgently are discussed, providing insights for scientific research and engineering technicians in this field.

参考文献

[1] HUNSAKER J C, WILSON E B. Report on behavior of aeroplanes in gusts:NACA-TR-1[R]. Washington, D.C.:NASA, 1917.
[2] HOUBOLT J C. Atmospheric turbulence[J]. AIAA Journal, 1973, 11(4):421-437.
[3] 沈强, 沈文武. 一种新的预报晴空湍流综合算法[J]. 气象与减灾研究, 2009, 32(2):44-49. SHEN Q, SHEN W W. A new synthesis algorithm for clear air turbulence forecast[J]. Meteorology and Disaster Reduction Research, 2009, 32(2):44-49(in Chinese).
[4] DISNEY T E. C-5A active load alleviation system[J]. Journal of Spacecraft and Rockets, 1977, 14(2):81-86.
[5] JOHNSTON J F. Accelerated development and flight evaluation of active controls concepts for subsonic transport aircraft. Volume 1:Load alleviation/extended span development and flight tests:NASA-CR-159097[R]. Washington, D.C.:NASA, 1979.
[6] WYKES J, BORLAND C, KLEPL M, et al. Design and development of a structural mode control system:NASA/CR-1977-143846[R]. Washington, D.C.:NASA, 1977.
[7] BRITT R, VOLK J, DREIM D, et al. Aeroservoelastic characteristics of the B-2 bomber and implications for future large aircraft:ADP010486[R]. Virginia:Defense Technical Information Center, 1999.
[8] REGAN C, JUTTE C. Survey of applications of active control technology for gust alleviation and new challenges for lighter-weight aircraft:NASA/TM-2012-216008[R]. Washington, D.C.:NASA, 2012.
[9] HOBLIT F M. Gust loads on aircraft:Concepts and applications[M]. Reston:AIAA, 1988:1-14.
[10] ROSKAM J, DUSTO A. A method for predicting longitudinal stability derivatives of rigid and elastic airplanes[J]. Journal of Aircraft, 1969, 6(6):525-531.
[11] RODDEN W P. Dihedral effect of a flexible wing[J]. Journal of Aircraft, 1965, 2(5):368-373.
[12] LIVNE E. Aircraft active flutter suppression:State of the art and technology maturation needs[J]. Journal of Aircraft, 2017, 55(1):410-452.
[13] RODDEN W P, GIESING J P. Application of oscillatory aerodynamic theory to estimation of dynamic stability derivatives[J]. Journal of Aircraft, 1970, 7(3):272-275.
[14] 杨超. 飞行器气动弹性原理[M]. 2版. 北京:北京航空航天大学出版社, 2016:1-164. YANG C. Aeroelastic principle of aircraft[M]. 2nd ed. Beijing:Beijing University of Aeronautics & Astronautics Press, 2016:1-164(in Chinese).
[15] BISPLINGHOFF R L, ASHLEY H. Principles of aeroelasticity[M]. New York:Dover Publications, 2013:18-70.
[16] MILNE R D. Dynamics of the deformable aeroplane. Part 1. The equations of motion. Part 2. A study of the trim state and longitudinal stability of the slender integrated aeroplane configuration[R]. London:Aeronautical Research Council, 1964.
[17] WASZAK M, BUTTRILL C, SCHMIDT D. Modeling and model simplification of aeroelastic vehicles:An overview:NASA-TM-107691[R]. Washington,D.C:NASA, 1992.
[18] WASZAK M R, SCHMIDT D K. Flight dynamics of aeroelastic vehicles[J]. Journal of Aircraft, 1988, 25(6):563-571.
[19] SCHMIDT D K, RANEY D L. Modeling and simulation of flexible flight vehicles[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(3):539-546.
[20] BUTTRILL C, ARBUCKLE P, ZEILER T. Nonlinear simulation of a flexible aircraft in maneuvering flight[C]//Flight Simulation Technologies Conference. Reston:AIAA, 1987.
[21] KOKOTOVIĆ P V, O'MALLAY R E Jr, SANNUTI P. Singular perturbations and order reduction in control theory-An overview[J]. Automatica, 1976, 12(2):123-132.
[22] MEIROVITCH L, TUZCU I. Integrated approach to flight dynamics and aeroservoelasticity of whole flexible aircraft-part I:system modeling[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2002.
[23] MEIROVITCH L, TUZCU I. Integrated approach to the dynamics and control of maneuvering flexible aircraft:NASA/CR-2003-211748[R]. Washington, D.C.:NASA, 2003.
[24] MEIROVITCH L, TUZCU I. Time simulations of the response of maneuvering flexible aircraft[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5):814-828.
[25] MEIROVITCH L, TUZCU I. Unified theory for the dynamics and control of maneuvering flexible aircraft[J]. AIAA Journal, 2004, 42(4):714-727.
[26] NOLL T, ISHMAEL S, HENWOOD B, et al. Technical findings, lessons learned, and recommendations resulting from the helios prototype vehicle mishap:NASA/WBS-810031[R]. Washington, D.C.:NASA, 2007.
[27] HODGES D, DOWELL E. Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades:NASA TN D-7818[R]. Washington, D.C.:NASA, 1974.
[28] HODGES D H, ORMISTON R A, PETERS D A. On the nonlinear deformation geometry of Euler-Bernoulli beams:NASA-1566[R]. Washington, D.C.:NASA, 1980.
[29] HINNANT H E, HODGES D H. Nonlinear analysis of a cantilever beam[J]. AIAA Journal, 1988, 26(12):1521-1527.
[30] HODGES D H. A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams[J]. International Journal of Solids and Structures, 1990, 26(11):1253-1273.
[31] ATILGAN A R, HODGES D H. Unified nonlinear analysis for nonhomogeneous anisotropic beams withclosed cross sections[J]. AIAA Journal, 1991, 29(11):1990-1999.
[32] CESNIK C E S, HODGES D H, SUTYRIN V G. Cross-sectional analysis of composite beams including large initial twist and curvature effects[J]. AIAA Journal, 1996, 34(9):1913-1920.
[33] PATIL M, HODGES D, CESNIK C. Nonlinear aeroelastic analysis of aircraft with high-aspect-ratio wings[C]//39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston:AIAA, 1998.
[34] PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelastic analysis of complete aircraft in subsonic flow[J]. Journal of Aircraft, 2000, 37(5):753-760.
[35] PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft[J]. Journal of Aircraft, 2001, 38(1):88-94.
[36] PATIL M J, HODGES D H. Flight dynamics of highly flexible flying wings[J]. Journal of Aircraft, 2006, 43(6):1790-1799.
[37] PATIL M, TAYLOR D. Gust response of highly flexible aircraft[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 14th AIAA/ASME/AHS Adaptive Structures Conference. Reston:AIAA, 2006.
[38] PATIL M. Nonlinear gust response of highly flexible aircraft[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2007.
[39] HOUBOLT J C. Design manual for vertical gusts based on power spectral techniques:AFFDL-TR-70-106[R]. Princeton:Aeronautical Research Associates of Princeton Inc, 1970.
[40] 金长江, 肖业伦. 大气扰动中的飞行原理[M]. 北京:国防工业出版社, 1992:11-70. JIN C J, XIAO Y L. Flight principle in atmospheric disturbance[M]. Beijing:National Defense Industry Press, 1992:11-70(in Chinese).
[41] FULLER J R. Evolution of airplane gust loads design requirements[J]. Journal of Aircraft, 1995, 32(2):235-246.
[42] FAA. Federal aviation regulations, Part25:airworthiness standards:transport category airplanes, Section 341:Gust and turbulence loads[S]. Washington, D.C.:Department of Transportation, Federal Aviation Administration, 1996.
[43] EASA. Certification specifications for large aeroplanes:CS-25[S]. Europe:EASA, 2009.
[44] CAA. Joint airworthiness requirements, JAR-25:Large aeroplanes[S]. Cheltenham:Civil Aviation Authorities, 1994.
[45] 中国民用航空局. CCAR-25-R4中国民用航空规章第25部:运输类飞机适航标准[S]. 北京:中国民用航空局, 2016. Civil Aviation Administration of China. CCAR-25-R4 China Civil Aviation Regulations Part 25:Airworthiness standards for transport aircraft[S]. Beijing:Civil Aviation Administration of China, 2016(in Chinese).
[46] FULLER J, FULLER J. Evolution and future development of airplane gust loads design requirements[C]//1997 World Aviation Congress. Reston:AIAA, 1997.
[47] WU Z, CAO Y, ISMAIL M. Gust loads on aircraft[J]. The Aeronautical Journal, 2019, 123(1266):1216-1274.
[48] NOBACK R. Comparison of discrete and continuous gust methods for airplane design loads determination[J]. Journal of Aircraft, 1986, 23(3):226-231.
[49] JONES J G. Modelling of gusts and wind shear for aircraft assessment and certification[J]. Proceedings of the Indian Academy of Sciences Section C:Engineering Sciences, 1980, 3(1):1-30.
[50] YANG Y, YANG C, WU Z G. Aeroelastic dynamic response of elastic aircraft with consideration of two-dimensional discrete gust excitation[J]. Chinese Journal of Aeronautics, 2020, 33(4):1228-1241.
[51] 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015, 36(4):1011-1033. YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1011-1033(in Chinese).
[52] 杨超, 杨澜, 谢长川. 大展弦比柔性机翼气动弹性分析中的气动力方法研究进展[J]. 空气动力学学报, 2018, 36(6):1009-1018, 983. YANG C, YANG L, XIE C C. Development of aerodynamic methods in aeroelastic analysis for high aspect ratio flexible wings[J]. Acta Aerodynamica Sinica, 2018, 36(6):1009-1018, 983(in Chinese).
[53] WRIGHT J R, COOPER J E. Introduction to aircraft aeroelasticity and loads[M]. Chichester:John Wiley, 2007:153-165.
[54] PETERS D A, KARUNAMOORTHY S, CAO W M. Finite state induced flow models. I-Two-dimensional thin airfoil[J]. Journal of Aircraft, 1995, 32(2):313-322.
[55] PETERS D A, HE C J. Finite state induced flow models. II-Three-dimensional rotor disk[J]. Journal of Aircraft, 1995, 32(2):323-333.
[56] CESNIK C, SU W H. Nonlinear aeroelastic modeling and analysis of fully flexible aircraft[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2005.
[57] SU W H, CESNIK C E S. Dynamic response of highly flexible flying wings[J]. AIAA Journal, 2011, 49(2):324-339.
[58] SU W H, CESNIK C E S. Nonlinear aeroelasticity of a very flexible blended-wing-body aircraft[J]. Journal of Aircraft, 2010, 47(5):1539-1553.
[59] CESNIK C, SU W H. Nonlinear aeroelastic simulation of X-HALE:A very flexible UAV[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011.
[60] CESNIK C E S, SENATORE P J, SU W H, et al. X-HALE:A very flexible unmanned aerial vehicle for nonlinear aeroelastic tests[J]. AIAA Journal, 2012, 50(12):2820-2833.
[61] KATZ J, PLOTKIN A. Low-speed aerodynamics[M]. 2nd ed. Cambridge:Cambridge University Press, 2001:369-448.
[62] RODDEN W P. MSC/NASTRAN aeroelastic analysis:User's guide[M]. Version 68. Los Angeles:MacNeal-Schwendler Corporation, 1994.
[63] ZAERO Z. Theoretical manual[M]. Version 8.2. Scottsdale:ZONA Technology, 2008.
[64] ALBANO E, RODDEN W P. A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows[J]. AIAA Journal, 1969, 7(2):279-285.
[65] KALMAN T P, RODDEN W P, GIESING J P. Application of the doublet-lattice method to nonplanar configurations in subsonic flow[J]. Journal of Aircraft, 1971, 8(6):406-413.
[66] GIESING J, KALMAN T. Subsonic unsteady aerodynamics for general configurations[C]//10th Aerospace Sciences Meeting. Reston:AIAA, 1972.
[67] RODDEN W P, TAYLOR P F, MCINTOSH JR S C. Further refinement of the subsonic doublet-lattice method[J]. Journal of Aircraft, 1998, 35(5):720-727.
[68] BAKER M L, RODDEN W P. Improving the convergence of the doublet-lattice method through tip corrections[J]. Journal of Aircraft, 2001, 38(4):772-776.
[69] MURUA J, PALACIOS R, GRAHAM J M R. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics[J]. Progress in Aerospace Sciences, 2012, 55:46-72.
[70] LIU Y, XIE C C, YANG C, et al. Gust response analysis and wind tunnel test for a high-aspect ratio wing[J]. Chinese Journal of Aeronautics, 2016, 29(1):91-103.
[71] WANG Z C, CHEN P C, LIU D D, et al. Time domain nonlinear aeroelastic analysis for HALE wings[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 14th AIAA/ASME/AHS Adaptive Structures Conference. Reston:AIAA, 2006.
[72] WANG Z C, CHEN P C, LIU D, et al. Nonlinear aeroelastic analysis for A HALE wing including effects of gust and flow separation[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2007.
[73] WANG Z, CHEN P C, LIU D D, et al. Nonlinear-aerodynamics/nonlinear-structure interaction methodology for a high-altitude long-endurance wing[J]. Journal of Aircraft, 2010, 47(2):556-566.
[74] BHASIN S, CHEN P, WANG Z C, et al. Dynamic nonlinear aeroelastic analysis of the joined wing configuration[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2012.
[75] 杨国伟. 计算气动弹性若干研究进展[J]. 力学进展, 2009, 39(4):406-420. YANG G W. Recent progress on computational aeroelasticity[J]. Advances in Mechanics, 2009, 39(4):406-420(in Chinese).
[76] 顾宁. 基于CFD的机翼阵风响应及减缓计算[D]. 南京:南京航空航天大学, 2013:1-4. GU N. CFD-based gust response and alleviation research of aircraft wing[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013:1-4(in Chinese).
[77] PARAMESWARAN V, BAEDER J D. Indicial aerodynamics in compressible flow-direct computational fluid dynamic calculations[J]. Journal of Aircraft, 1997, 34(1):131-133.
[78] SINGH R, BAEDER J D. Direct calculation of three-dimensional indicial lift response using computational fluid dynamics[J]. Journal of Aircraft, 1997, 34(4):465-471.
[79] 詹浩, 钱炜祺. 薄翼型阵风响应的数值模拟[J]. 航空学报, 2007, 28(3):527-530. ZHAN H, QIAN W Q. Numerical simulation of gust response for thin airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3):527-530(in Chinese).
[80] 许晓平, 祝小平, 周洲, 等. 基于CFD方法的阵风响应与阵风减缓研究[J]. 西北工业大学学报, 2010, 28(6):818-823. XU X P, ZHU X P, ZHOU Z, et al. Further exploring CFD-based gust response and gust alleviation[J]. Journal of Northwestern Polytechnical University, 2010, 28(6):818-823(in Chinese).
[81] 顾宁, 陆志良, 郭同庆, 等. 阵风响应及减缓的非定常数值模拟[J]. 航空计算技术, 2012, 42(3):49-53. GU N, LU Z L, GUO T Q, et al. Gust response and alleviation analysis of airfoil[J]. Aeronautical Computing Technique, 2012, 42(3):49-53(in Chinese).
[82] 赵炜, 黄江流, 张顺家, 等. 耦合滑流太阳能无人机阵风响应特性研究[J]. 飞行力学, 2020, 38(3):11-17. ZHAO W, HUANG J L, ZHANG S J, et al. Research on gust response characteristics of solar-powered UAV coupling with propeller slipstream[J]. Flight Dynamics, 2020, 38(3):11-17(in Chinese).
[83] 陈刚, 李跃明. 非定常流场降阶模型及其应用研究进展与展望[J]. 力学进展, 2011, 41(6):686-701. CHEN G, LI Y M. Advances and prospects of the reduced order model for unsteady flow and its application[J]. Advances in Mechanics, 2011, 41(6):686-701(in Chinese).
[84] 师妍, 万志强, 吴志刚, 等. 基于气动力降阶的弹性飞机阵风响应仿真分析及验证[J]. 航空学报, 2022, 43(1):125474. SHI Y, WAN Z Q, WU Z G, et al. Gust response analysis and verification of elastic aircraft based on nonlinear aerodynamic reduced-order model[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1):125474(in Chinese).
[85] 程昱. 阵风载荷分析方法研究和减缓主动控制的初步讨论[D]. 北京:北京航空航天大学, 2014:20-24. CHENG Y. Study on gust analysis method and preliminary discussion on active control of slowing down[D]. Beijing:Beihang University, 2014:20-24(in Chinese).
[86] KARPEL M, MOULIN B, PRESENTE E, et al. Dynamic gust loads analysis for transport aircraft with nonlinear control effects[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,16th AIAA/ASME/AHS Adaptive Structures Conference, 10th AIAA Non-Deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Special-ists Conference. Reston:AIAA, 2008.
[87] AZOULAY D, KARPEL M. Characterization of methods for computation of aeroservoelastic systems response to gust excitation[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2006.
[88] KARPEL M. Time-domain aeroservoelastic modeling using weighted unsteady aerodynamic forces[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(1):30-37.
[89] ZOLE A, KARPEL M. Continuous gust response and sensitivity derivatives using state-space models[J]. Journal of Aircraft, 1994, 31(5):1212-1214.
[90] KARPEL M, MOULIN B, ANGUITA L, et al. Aeroservoelastic gust response analysis for the design of transport aircrafts[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston:AIAA, 2004.
[91] 徐敏, 安效民, 陈士橹. 一种CFD/CSD耦合计算方法[J]. 航空学报, 2006, 27(1):33-37. XU M, AN X M, CHEN S L. CFD/CSD couping numerical computational methodology[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(1):33-37(in Chinese).
[92] HALLISSY B, CESNIK C. High-fidelity aeroelastic analysis of very flexible aircraft[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 19th AIAA/ASME/AHS Adaptive Structures Conference. Reston:AIAA, 2011.
[93] GUO D, XU M, CHEN S L. Nonlinear gust response analysis of free flexible aircraft[J]. International Journal of Intelligent Systems and Applications, 2013, 5(2):1-15.
[94] PALACIOS R, MURUA J, COOK R. Structural and aerodynamic models in nonlinear flight dynamics of very flexible aircraft[J]. AIAA Journal, 2010, 48(11):2648-2659.
[95] 聂雪媛, 杨国伟. 基于CFD降阶模型的阵风减缓主动控制研究[J]. 航空学报, 2015, 36(4):1103-1111. NIE X Y, YANG G W. Gust alleviation active control based on CFD reduced-order models[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1103-1111(in Chinese).
[96] ETKIN B. Turbulent wind and its effect on flight[J]. Journal of Aircraft, 1981, 18(5):327-345.
[97] 吴森堂, 费玉华. 飞行控制系统[M]. 北京:北京航空航天大学出版社, 2005:392-419. WU S T, FEI Y H. Flight control[M]. Beijing:Beijing University of Aeronautics & Astronautics Press, 2005:392-419(in Chinese).
[98] 张京杭. 飞翼布局飞机阵风减缓方法研究[D]. 北京:北京航空航天大学, 2020:25-27. ZHANG J H. Study on gust alleviation for flying wing aircraft[D]. Beijing:Beihang University, 2020:25-27(in Chinese).
[99] 高洁, 王立新, 周堃. 大展弦比飞翼构型飞机阵风载荷减缓控制[J]. 北京航空航天大学学报, 2008, 34(9):1076-1079. GAO J, WANG L X, ZHOU K. Gust load alleviation control of aircraft with large ratio flying wing configuration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(9):1076-1079(in Chinese).
[100] 张波, 祝小平, 周洲, 等. 基于纵向直接力控制的飞翼布局无人机紊流减缓[J]. 西北工业大学学报, 2014, 32(5):675-681. ZHANG B, ZHU X P, ZHOU Z, et al. Turbulence alleviation of unmanned aerial vehicle with fly wing configuration based on longitudinal direct force control[J]. Journal of Northwestern Polytechnical University, 2014, 32(5):675-681(in Chinese).
[101] WU Z G, CHEN L, YANG C. Study on gust alleviation control and wind tunnel test[J]. Science China Technological Sciences, 2013, 56(3):762-771.
[102] 杨俊斌, 吴志刚, 戴玉婷, 等. 飞翼布局飞机阵风减缓主动控制风洞试验[J]. 北京航空航天大学学报, 2017, 43(1):184-192. YANG J B, WU Z G, DAI Y T, et al. Wind tunnel test of gust alleviation active control for flying wing configuration aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1):184-192(in Chinese).
[103] 周宜涛, 杨阳, 吴志刚, 等. 大展弦比无人机平台的阵风减缓飞行试验[J]. 航空学报, 2022, 43(6):526126. ZHOU Y T, YANG Y, WU Z G, et al. Flight test for gust alleviation on a high aspect ratio UAV platform[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6):526126(in Chinese).
[104] GANGSAAS D, LY U. Appilication of a modified linear quadratic Gaussian design to active control of a transport airplane[C]//Guidance and Control Conference. Reston:AIAA, 1979.
[105] GANGSAAS D, LY U, NORMAN D. Practical gust load alleviation and flutter suppression control laws based on a LQG methodology[C]//19th Aerospace Sciences Meeting. Reston:AIAA, 1981.
[106] 吴志刚, 杨超. 主动气动弹性机翼的颤振主动抑制与阵风减缓研究[J]. 机械强度, 2003, 25(1):32-35, 38. WU Z G, YANG C. Investigation on active flutter suppression and gust alleviation for an active aeroelastic wing[J]. Journal of Mechanical Strength, 2003, 25(1):32-35, 38(in Chinese).
[107] 张军红, 李振水, 詹孟权, 等. LQG控制理论在阵风载荷减缓系统中的应用[J]. 飞行力学, 2007, 25(2):61-64. ZHANG J H, LI Z S, ZHAN M Q, et al. Application of LQG theory to gust load alleviation system[J]. Flight Dynamics, 2007, 25(2):61-64(in Chinese).
[108] 张军红, 李振水, 詹孟权, 等. 阵风载荷减缓系统LQG/LTR多变量控制器设计[J]. 飞行力学, 2007, 25(4):33-36. ZHANG J H, LI Z S, ZHAN M Q, et al. LQG/LTR multivariable controller design for a gust load alleviation system[J]. Flight Dynamics, 2007, 25(4):33-36(in Chinese).
[109] LIU X, SUN Q. Improved LQG method for active gust load alleviation[J]. Journal of Aerospace Engineering, 2017, 30(4):04017006.
[110] VARTIO E, SHAW E, VETTER T. Gust load alleviation flight control system design for a SensorCraft vehicle[C]//26th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2008.
[111] DILLSAVER M, CESNIK C, KOLMANOVSKY I. Gust load alleviation control for very flexible aircraft[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2011.
[112] AOUF N, BOULET B, BOTEZ R. Robust gust load alleviation for a flexible aircraft[J]. Canadian Aeronautics and Space Journal, 2000, 46(3):131-139.
[113] 傅军, 万婧, 艾剑良. 弹性飞机阵风缓和鲁棒控制研究[J]. 复旦学报(自然科学版), 2016, 55(3):329-335. FU J, WAN J, AI J L. Robust control of flexible aircraft for gust alleviation[J]. Journal of Fudan University (Natural Science), 2016, 55(3):329-335(in Chinese).
[114] WILDSCHEK A, MAIER R, HROMCIK M, et al. Hybrid controller for gust load alleviation and ride comfort improvement using direct lift control flaps[C]//Proceedings of Third European Conference for Aerospace Sciences. Paris:EUCASS, 2009.
[115] COOK R G, PALACIOS R, GOULART P. Robust gust alleviation and stabilization of very flexible aircraft[J]. AIAA Journal, 2013, 51(2):330-340.
[116] YAGIL L, RAVEH D E, IDAN M. Deformation control of highly flexible aircraft in trimmed flight and gust encounter[J]. Journal of Aircraft, 2017, 55(2):829-840.
[117] LIU X, SUN Q. Gust load alleviation with robust control for a flexible wing[J]. Shock and Vibration, 2016, 2016:1060574.
[118] 刘伏虎, 马晓平, 张子健. 飞翼布局无人机阵风减缓主动控制研究[J]. 机械科学与技术, 2015, 34(10):1631-1635. LIU F H, MA X P, ZHANG Z J. Active control of gust alleviation for flying wing configuration UAV[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(10):1631-1635(in Chinese).
[119] ZENG J, KUKREJA S L, MOULIN B. Experimental model-based aeroelastic control for flutter suppression and gust-load alleviation[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(5):1377-1390.
[120] HAGHIGHAT S, LIU H H T, MARTINS J R R A. Model-predictive gust load alleviation controller for a highly flexible aircraft[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(6):1751-1766.
[121] WANG Y N, WYNN A, PALACIOS R. Model-predictive control of flexible aircraft dynamics using nonlinear reduced-order models[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2016.
[122] GIESSELER H G, KOPF M, VARUTTI P, et al. Model predictive control for gust load alleviation[C]//IFAC Nonlinear Model Predictive Control Conference, 2012, 45(17):27-32.
[123] BARZGARAN B, QUENZER J D, MESBAHI M, et al. Real-time model predictive control for gust load alleviation on an aeroelastic wind tunnel test article[C]//AIAA Scitech 2021 Forum. Reston:AIAA, 2021.
[124] LIU X, SUN Q, COOPER J E. LQG based model predictive control for gust load alleviation[J]. Aerospace Science and Technology, 2017, 71:499-509.
[125] 陈洋, 王正杰, 郭士钧. 多控制面柔性翼飞行器阵风减缓研究[J]. 北京理工大学学报, 2017, 37(12):1229-1234, 1240. CHEN Y, WANG Z J, GUO S J. Gust alleviation of flexible wing aircraft with multiple control surfaces[J]. Transactions of Beijing Institute of Technology, 2017, 37(12):1229-1234, 1240(in Chinese).
[126] 刘璟龙, 胡陟, 章卫国, 等. 基于模型预测及控制分配的阵风缓和研究[J]. 西北工业大学学报, 2017, 35(2):259-266. LIU J L, HU Z, ZHANG W G, et al. A MPC and control allocation method for gust load alleviation[J]. Journal of Northwestern Polytechnical University, 2017, 35(2):259-266(in Chinese).
[127] FERRIER Y, NGUYEN N T, TING E, et al. Active gust load alleviation of high-aspect ratio flexible wing aircraft[C]//2018 AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2018.
[128] CAPELLO E, GUGLIERI G, QUAGLIOTTI F. A comprehensive robust adaptive controller for gust load alleviation[J]. The Scientific World Journal, 2014, 2014:609027.
[129] LIU X X, YU L, MA Q Y, et al. Gust alleviation controller for elastic aircraft based on L1 adaptive control[C]//2017 Chinese Automation Congress (CAC). Piscataway:IEEE Press, 2017:5382-5385.
[130] WILDSCHEK A, MAIER R, HOFFMANN F, et al. Active wing load alleviation with an adaptive feed-forward control algorithm[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2006.
[131] ZHAO Y H, YUE C Y, HU H Y. Gust load alleviation on a large transport airplane[J]. Journal of Aircraft, 2016, 53(6):1932-1946.
[132] ZENG J, MOULIN B, DE CALLAFON R, et al. Adaptive feedforward control for gust load alleviation[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(3):862-872.
[133] GILI P, RUOTOLO R, GILI P, et al. A neural gust alleviator for a non-linear combat aircraft model[C]//Guidance, Navigation, and Control Conference. Reston:AIAA, 1997.
[134] SHAO K, WU Z G, YANG C, et al. Theoretical and experimental study of gust response alleviation using neuro-fuzzy control law for a flexible wing model[J]. Chinese Journal of Aeronautics, 2010, 23(3):290-297.
[135] SHAO K, WU Z G, YANG C, et al. Design of an adaptive gust response alleviation control system:simulations and experiments[J]. Journal of Aircraft, 2010, 47(3):1022-1029.
[136] SHAO K, YANG C, WU Z G, et al. Design of a gust-response-alleviation online control system based on neuro-fuzzy theory[J]. Journal of Aircraft, 2013, 50(2):599-609.
[137] PEREIRA P, ALMEIDA L, SULEMAN A, et al. Aeroelastic scaling and optimization of a joined-wing aircraft concept[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2007.
[138] TANG B, WU Z G, YANG C. Aeroelastic scaling laws for gust load alleviation control system[J]. Chinese Journal of Aeronautics, 2016, 29(1):76-90.
[139] 杨希明, 刘南, 郭承鹏, 等. 飞行器气动弹性风洞试验技术综述[J]. 空气动力学学报, 2018, 36(6):995-1008. YANG X M, LIU N, GUO C P, et al. A survey of aeroelastic wind tunnel test techonlogy of flight vehicles[J]. Acta Aerodynamica Sinica, 2018, 36(6):995-1008(in Chinese).
[140] GRANT B E. A method for measuring aerodynamic damping of helicopter rotors in forward flight[J]. Journal of Sound and Vibration, 1966, 3(3):407-421.
[141] TEUNISSEN H. An ejector-driven wind tunnel for the generation of turbulent flows with arbitrary mean velocity profile[C]//CASI/AIAA Subsonic Aero- and Hydro-Dynamics Meeting. Reston:AIAA, 1969.
[142] GRISSOM D, DEVENPORT W. Development and testing of a deterministic disturbance generator[C]//10th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA, 2004.
[143] RICCI S, SCOTTI A. Wind tunnel testing of an active controlled wing under gust excitation[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference, 10th AIAA Non-Deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Specialists Conference. Reston:AIAA, 2008.
[144] 楚龙飞, 刘晓燕, 吴志刚. 阵风减缓模型风洞试验的阵风发生器设计与应用[C]//第十一届全国空气弹性学术交流会会议论文集. 西安:中航工业第一飞机设计研究院, 2009:187-192. CHU L F, LIU X Y, WU Z G. Design and application of gust generator for wind tunnel test of gust mitigation model[C]//11th National Academic Exchange Conference on Aeroelasticity. Xi'an:AVIC The First Aircraft Institute, 2009:187-192(in Chinese).
[145] 刘晓燕, 吴志刚, 杨超, 等. 阵风发生器流场特性分析与试验验证[J]. 北京航空航天大学学报, 2010, 36(7):803-807. LIU X Y, WU Z G, YANG C, et al. Flow field analysis and experimental investigation on gust generator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7):803-807(in Chinese).
[146] 梁鉴, 唐建平, 杨远志, 等. FL-12风洞突风试验装置研制[J]. 实验流体力学, 2012, 26(3):95-100. LIANG J, TANG J P, YANG Y Z, et al. The development of gust generators in FL-12 wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3):95-100(in Chinese).
[147] 金华, 王辉, 张海酉, 等. FL-13风洞突风发生装置研究[J]. 空气动力学学报, 2016, 34(1):40-46. JIN H, WANG H, ZHANG H Y, et al. Investigation on gust response test apparatus in FL-13 wind tunnel[J]. Acta Aerodynamica Sinica, 2016, 34(1):40-46(in Chinese).
[148] 于金革, 杨希明, 陈宝, 等. FL-5风洞阵风发生器流场特性研究[C]//第十届全国流体力学学术会议论文摘要集. 杭州:中国力学学会流体力学专业委员会, 2018:237. YU J G, YANG X M, CHEN B, et al. Flow field characteristics of FL-5 wind tunnel gust generator[C]//Proceedings of the 10th National Conference on Fluid Mechanics. Hangzhou:Committee of Fluid Mechanics, Chinese Society of Mechanics, 2018:237(in Chinese).
[149] 刘南, 郭承鹏, 于金革. FL-5风洞阵风发生器数值模拟与风洞试验结果对比验证[C]//第四届全国非定常空气动力学学术会议论文集. 合肥:中国力学学会流固耦合力学专业委员会, 2018:111-112. LIU N, GUO C P, YU J G. Comparison and verification of FL-5 wind tunnel gust generator numerical simulation and wind tunnel test results[C]//Proceedings of the Fourth National Unsteady Aerodynamics Conference. Hefei:Committee of Fluid-Structure Coupling Mechanics, Chinese Society of Mechanics, 2018:111-112(in Chinese)
[150] BLCKNELL J, PARKER A G. A wind-tunnel stream oscillation apparatus[J]. Journal of Aircraft, 1972, 9(6):446-447.
[151] PARKER A G, BICKNELL J. Some measurements on dynamic stall[J]. Journal of Aircraft, 1974, 11(7):371-374.
[152] SIMMONS J M, PLATZER M F. Experimental investigation of incompressible flow past airfoils with oscillating jet flaps[J]. Journal of Aircraft, 1971, 8(8):587-592.
[153] GILMAN JR J, BENNETT R M. A wind-tunnel technique for measuring frequency-response functions for gust load analyses[J]. Journal of Aircraft, 1966, 3(6):535-540.
[154] BUELL D A. An experimental investigation of the velocity fluctuations behind oscillating vanes:NASA-TN-D-5543[R]. Washington, D.C.:NASA, 1969.
[155] REID C, WRESTLER C. An investigation of a device to oscillate a wind-tunnel airstream:NASA-TN-D-739[R]. Washington, D.C.:NASA, 1961.
[156] ALLEN N J, QUINN M. Development of a transonic gust rig for simulation of vertical gusts on half-models[C]//31 st AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston:AIAA, 2015.
[157] HAM N, BAUER P, LAWRENCE T. Wind tunnel generation of sinusoidal lateral and longitudinal gusts by circulation of twin parallel airfoils:ASRL-TR-174-3[R]. Washington, D.C.:NASA, 1974.
[158] 郭承鹏, 张颖, 刘南, 等. 高速风洞阵风载荷试验技术初探[C]//中国力学大会论文集(CCTAM 2019). 北京:中国力学学会, 2019:3908-3916. GUO C P, ZHANG Y, LIU N, et al. A study of high-speed wind tunnel gust load test technique[C]//CCTAM 2019. Beijing:Chinese Society of Mechanics, 2019:3908-3916(in Chinese).
[159] TANG D M, DOWELL E H. Response of a nonrotating rotor blade to lateral turbulence Part II:experiment[J]. Journal of Aircraft, 1995, 32(1):154-160.
[160] TANG D M, CIZMAS P G A, DOWELL E H. Experiments and analysis for a gust generator in a wind tunnel[J]. Journal of Aircraft, 1996, 33(1):139-148.
[161] 向正平, 戴玉婷, 黄广靖. 旋转开槽圆筒式阵风发生器流场特性数值模拟[J]. 空气动力学学报, 2019, 37(6):950-955. XIANG Z P, DAI Y T, HUANG G J. Numerical simulation of flow field characteristics about rotating slotted cylinder gust generator[J]. Acta Aerodynamica Sinica, 2019, 37(6):950-955(in Chinese).
[162] COLE S, GARCIA J. Past, present, and future capabilities of the transonic dynamics tunnel from an aeroelasticity perspective[C]//41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston:AIAA, 2000.
[163] 路波, 吕彬彬, 罗建国, 等. 跨声速风洞全模颤振试验技术[J]. 航空学报, 2015, 36(4):1086-1092. LU B, LYU B B, LUO J G, et al. Wind tunnel technique for transonic full-model flutter test[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1086-1092(in Chinese).
[164] SCOTT R, VETTER T, PENNING K, et al. Aeroservoelastic testing of a sidewall mounted free flying wind-tunnel model[C]//26th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2008.
[165] 杨俊斌, 吴志刚, 戴玉婷, 等. 飞翼布局飞机阵风减缓主动控制风洞试验[J]. 北京航空航天大学学报, 2017, 43(1):184-192. YANG J B, WU Z G, DAI Y T, et al. Wind tunnel test of gust alleviation active control for flying wing configuration aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1):184-192(in Chinese).
[166] REICHENBACH E, SHARMA V. Development of an innovative support system for SensorCraft model[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2011.
[167] PERRY III B. Qualitative comparison of calculated turbulence responses with wind-tunnel measurements for a DC-10 derivative wing with an active control system[C]//22nd Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 1981.
文章导航

/