流体力学与飞行力学

计及叶片前缘周向不均匀源项的弯掠叶片流动机理

  • 桂幸民 ,
  • 金东海 ,
  • 张健成 ,
  • 宋满祥 ,
  • 赵洋 ,
  • 胡大权
展开
  • 1. 北京航空航天大学 能源与动力工程学院, 北京 100191;
    2. 北京航空航天大学江西研究院, 南昌 330096;
    3. 绍兴上虞中隧风机有限公司, 绍兴 312375

收稿日期: 2022-05-05

  修回日期: 2022-05-10

  网络出版日期: 2022-10-12

基金资助

国家科技重大专项(2017-I-0005-0006,2019-II-0020-0041)

Flow mechanism of bowed and swept blades with consideration of circumferential fluctuation source term before blade leading edge

  • GUI Xingmin ,
  • JIN Donghai ,
  • ZHANG Jiancheng ,
  • SONG Manxiang ,
  • ZHAO Yang ,
  • HU Daquan
Expand
  • 1. School of Energy and Power Engineering, Beihang University, Beijing 100191, China;
    2. Jiangxi Research Institute of Beihang University, Nanchang 330096, China;
    3. Shaoxing Shangyu Zhongsui Fans Co. Ltd., Shaoxing 312375, China

Received date: 2022-05-05

  Revised date: 2022-05-10

  Online published: 2022-10-12

Supported by

National Science and Technology Major Project (2017-I-0005-0006, 2019-II-0020-0041)

摘要

目前弯掠叶片被广泛应用于现代叶轮机设计,以协调高负荷、高通流、高效率和喘振裕度之间的矛盾,但同时也会引发应力、振动和稳定性等问题。因此,为更好地发挥弯掠叶片的气动优势,同时减少其空间结构复杂性,需要对弯掠空气动力学有更深的机理认识。利用周向平均降维方法,推导获得了可定量描述的周向不均匀源项,揭示出周向不均匀性会诱发叶轮机进气流场产生不同于直叶片的再平衡,进而影响弯掠叶片各基元的设计迎角,并使叶轮机内部流场和性能特性产生变化。采用数值仿真和Stereoscopic Particle Image Velocimetry (SPIV)实验的方法对弯掠叶片的这一机理进行了验证。结果表明弯掠叶片中,周向不均匀源项会打破原有的进气流场的径向平衡,导致进气流场的径向迁移,使进气流场关键参数产生展向差异,改变迎角的展向分布,进而影响整个流场性能。同时,对影响进气流场的周向不均匀源项构建解析模型及机器学习代理模型,解除叶轮机进气均匀流场的传统假设,以利于三维弯掠叶片的气动设计与分析。

本文引用格式

桂幸民 , 金东海 , 张健成 , 宋满祥 , 赵洋 , 胡大权 . 计及叶片前缘周向不均匀源项的弯掠叶片流动机理[J]. 航空学报, 2022 , 43(10) : 527371 -527371 . DOI: 10.7527/S1000-6893.2022.27371

Abstract

Bowed and swept blades have been widely used in the transonic fan/compressor of aircraft engines to harmonize the conflicts between high loading, high through-flow, high efficiency, and acceptable stall/surge margin. However, these blades can also induce stress, vibration, and stability problems. Therefore, to better apply the advantages of bowed and swept blades to fans/compressors and reduce the complexity of their spatial structure, we need a deeper mechanistic understanding of bowed and swept aerodynamics. In this paper, the circumferential averaging method is used to derive a quantitatively describable circumferential fluctuation source term, which reveals that the circumferential fluctuation induces a re-equilibrium of the fan/compressor inlet flow field different from that of a straight blade and which in turn affects the design incidence angle of each base element of the bowed and swept blade and produces changes in the flow field and performance characteristics of the fan/compressor. This mechanism of the curved (bowed and swept) blade is verified by numerical simulation and Stereoscopic Particle Image Velocimetry(SPIV) experiments. The results show that the circumferential fluctuation source term in the curved blade can break the radial equilibrium of the original inlet field, leading to the radial migration of the inlet field, generating the spanwise differences of the key parameters of the inlet field, changing the spanwise distribution of the incidence angle, and thus affecting the overall flow field performance. Meanwhile, an analytical model and a machine learning model are constructed for the circumferential fluctuation source terms affecting the inlet flow field to release the traditional assumption of a uniform flow field of inlet air, to facilitate the aerodynamic design and analysis of the 3D bowed and swept blade.

参考文献

[1] VIARS P. The impact of IHPTET on the engine/aircraft system:AIAA-1989-2137[R]. Reston:AIAA, 1989.
[2] Rolls-Royce PLC. Trent 1000-The engine walkthrough[R]. London:Rolls-Royce PLC, 2006.
[3] 李晓娟. 风扇/增压级内流场特性数值模拟与设计研究[D]. 北京:北京航空航天大学, 2009:72-91. LI X J. Performance numerical investigation and design of fan/compressor[D]. Beijing:Beihang University, 2009:72-91 (in Chinese).
[4] 金海良. 周向平均方法在多级轴流风扇/压气机设计与分析中的应用[D]. 北京:北京航空航天大学, 2011:41-59. JIN H L. Application of circumferential average method in multistage axial fan/compressor design and analysis[D]. Beijing:Beihang University, 2011:41-59 (in Chinese).
[5] 朱芳. 民用航空发动机高通流高效率风扇/增压级设计技术研究[D]. 北京:北京航空航天大学, 2013:37-57. ZHU F. Study on design techniques of high through-flow and high efficiency fan/booster of civil aeroengine[D]. Beijing:Beihang University, 2013:37-57 (in Chinese).
[6] 昌皓. 轴流压气机掠叶片流动机理与设计应用研究[D]. 北京:北京航空航天大学, 2015:53-80. CHANG H. Study on flow mechanism of blade sweep in axial compressors and the application in design process[D]. Beijing:Beihang University, 2015:53-80 (in Chinese).
[7] 唐明智. 叶轮机周向不均匀性建模及对弯掠特性影响的研究[D]. 北京:北京航空航天大学, 2018:68-98. TANG M Z. Modeling and analysis of circumferential non-uniformity in turbomachinery and its influence on blade bow and sweep characteristics[D]. Beijing:Beihang University, 2018:68-98 (in Chinese).
[8] 温磊. 掠叶片流动机理研究与实验分析[D]. 北京:北京航空航天大学, 2018:6-70. WEN L. Study and experimental analysis of the flow mechanism of the swept blade[D]. Beijing:Beihang University, 2018:6-70 (in Chinese).
[9] DENTON J D, XU L. The exploitation of three-dimensional flow in turbomachinery design[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 1998, 213(2):125-137.
[10] MOHAMMED K P, RAJ D P.Investigations on axial flow fan impellers with forward swept blades[J]. Journal of Fluids Engineering, 1977, 99(3):543-547.
[11] SASAKI T, BREUGELMANS F. Comparison of sweep and dihedral effects on compressor cascade performance[J]. Journal of Turbomachinery, 1998, 120(3):454-463.
[12] GALLIMORE S J, BOLGER J J, CUMPSTY N A, et al. The use of sweep and dihedral in multistage axial flow compressor blading-Part I:University research and methods development[J]. Journal of Turbomachinery, 2002, 124(4):521-532.
[13] CHANG H, ZHU F, JIN D H, et al. Effect of blade sweep on inlet flow in axial compressor cascades[J]. Chinese Journal of Aeronautics, 2015, 28(1):103-111.
[14] 闫嘉祥. 基于整机试验的某风扇改进设计[D]. 北京:北京航空航天大学, 2019:36-45. YAN J X. Improved design of a fan based on the turbofan engine test[D]. Beijing:Beihang University, 2019:36-45 (in Chinese).
[15] HORLOCK J H, DENTON J D. A review of some early design practice using computational fluid dynamics and a current perspective[J]. Journal of Turbomachinery, 2005, 127(1):5-13.
[16] 桂幸民, 金东海. 航空叶轮机原理及设计基础[M]. 北京:科学出版社, 2022:92-93. GUI X M, JIN D H. Turbomachinery principles and design fundamentals[M]. Beijing:Science Press, 2022:92-93 (in Chinese).
[17] BEATTY L A, SAVAGE M, EMERY J C. Low-speed cascade tests of two 45 degree swept compressor blades with constant spanwise loading:L53L07[R]. Washington, D.C.:NACA, 1954.
[18] GODWIN W R. Effect of sweep on performance of compressor blade sections as indicated by swept-blade rotor, unswept-blade rotor, and cascade tests:TN 4062[R]. Washington, D.C.:NACA, 1957.
[19] SMITH JR L H, YEH H. Sweep and dihedral effects in axial-flow turbomachinery[J]. Journal of Basic Engineering, 1963, 85(3):401-414.
[20] LEWIS R I, HILL J M. The influence of sweep and dihedral in turbomachinery blade rows[J]. Journal of Mechanical Engineering Science, 1971, 13(4):266-285.
[21] BLISS D, HAYDEN R, MURRAY B, et al. Design considerations for a novel low source noise transonic fan stage AIAA-1976-0577[R]. Reston:AIAA, 1976.
[22] LUCAS J, WOODWARD R, MACKINNON M. Acoustic evaluation of a novel swept-rotor fan:AIAA-1978-1121[R]. Reston:AIAA, 1978.
[23] HAYDEN R, BLISS D, MURRAY B, et al. Analysis and design of a high tip speed, low noise aircraft fan incorporating swept leading edge rotor and stator blades:CR-135092[R]. Washington, D.C.:NASA, 1977.
[24] NEUBERT R J, HOBBS D E, WEINGOLD H D. Application of sweep to improve the efficiency of a transonic fan. I-Design[J]. Journal of Propulsion and Power, 1995, 11(1):49-54.
[25] RABE D, HOYING D, KOFF S. Application of sweep to improve efficiency of a transonic fan. II-Performance and laser test results:AIAA-1991-2544[R]. Reston:AIAA, 1991.
[26] CREASON T, BAGHDADI S. Design and test of a low aspect ratio fan stage:AIAA-1988-2816[R]. Reston:AIAA, 1988.
[27] WENNERSTROM A J, FROST G R. Design of a 1500 ft/sec, transonic, high-through-flow, single-stage axial-flow compressor with low hub/tip ratio:TR-76-59[R]. Dayton:Air Force Aero-Propulsion Lab Wright-Patterson AFB,1976.
[28] WENNERSTROM A, DEROSE R, LAW C, et al. Investigation of a 1500 ft/sec, transonic, high-through-flow, single-stage axial-flow compressor with low hub/tip ratio:TR-76-92[R]. Dayton:Air Force Aero-Propulsion Lab Wright-Patterson AFB,1976.
[29] WENNERSTROM A J. Experimental study of a high-throughflow transonic axial compressor stage[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(3):552-560.
[30] WENNERSTROM A J, PUTERBAUGH S L. A three-dimensional model for the prediction of shock losses in compressor blade rows[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(2):295-299.
[31] HAH C, WENNERSTROM A J. Three-dimensional flowfields inside a transonic compressor with swept blades[J]. Journal of Turbomachinery, 1991, 113(2):241-250.
[32] COPENHAVER W W, HAH C, PUTERBAUGH S L. Three-dimensional flow phenomena in a transonic, high-through-flow, axial-flow compressor stage[J]. Journal of Turbomachinery, 1993, 115(2):240-248.
[33] PUTERBAUGH S L, COPENHAVER W W, HAH C, et al. A three-dimensional shock loss model applied to an aft-swept, transonic compressor rotor[J]. Journal of Turbomachinery, 1997, 119(3):452-459.
[34] WADIA A R, SZUCS P N, CRALL D W. Inner workings of aerodynamic sweep[J]. Journal of Turbomachinery, 1998, 120(4):671-682.
[35] HAH C, PUTERBAUGH S L, WADIA A R. Control of shock structure and secondary flow field inside transonic compressor rotors through aerodynamic sweep:98-GT-561[R]. New York:ASME, 1998.
[36] DENTON J D, XU L. The effects of lean and sweep on transonic fan performance:GT2002-30327[R]. New York:ASME, 2002.
[37] GALLIMORE S J, BOLGER J J, CUMPSTY N A, et al. The use of sweep and dihedral in multistage axial flow compressor blading-Part II:Low and high-speed designs and test verification[J]. Journal of Turbomachinery, 2002, 124(4):533-541.
[38] RAMAKRISHNA P V, GOVARDHAN M. Study of sweep and induced dihedral effects in subsonic axial flow compressor passages-Part I:Design considerations-Changes in incidence, deflection, and streamline curvature[J]. International Journal of Rotating Machinery, 2009, 2009:787145.
[39] RAMAKRISHNA P V, GOVARDHAN M. Combined effects of forward sweep and tip clearance on the performance of axial flow compressor stage:GT2009-59840[R]. New York:ASME, 2009.
[40] KWEDIKHA A R. Aerodynamic effects of blade sweep and skew applied to rotors of axial flow turbomachinery[D]. Budapest:Budapest University of Technology and Economics, 2015:24.
[41] VAD J, KWEDIKHA A R A, JABERG H. Effects of blade sweep on the performance characteristics of axial flow turbomachinery rotors[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2006, 220(7):737-749.
[42] VAD J, KWEDIKHA A R A, JABERG H. Influence of blade sweep on the energetic behavior of axial flow turbomachinery rotors at design flow rate:GT2004-53544[R]. New York:ASME, 2004.
[43] 桂幸民, 周拜豪. 压缩系统跨音进口级弯掠叶片空气动力学概述[J]. 航空动力学报, 1995, 10(4):407-411. GUI X M, ZHOU B H. A summary of lean-sweep aerodynamics in transonic-inlet-stages for compression system[J]. Journal of Aerospace Power, 1995, 10(4):407-411 (in Chinese).
[44] ZHU F, JIN D, GUI X. Design and numerical investigation of high-through-flow transonic fans with swept and straight blade[C]//International Gas Turbine Congress, 2011.
[45] GUI X M, ZHU F, WAN K, et al. Effects of inlet circumferential fluctuation on the sweep aerodynamic performance of axial fans/compressors[J]. Journal of Thermal Science, 2013, 22(5):383-394.
[46] BENINI E, BIOLLO R. Aerodynamics of swept and leaned transonic compressor-rotors[J]. Applied Energy, 2007, 84(10):1012-1027.
[47] RAMAKRISHNA P V, GOVARDHAN M. Numerical study of the stagger angle effects in forward swept axial compressor rotor passages:GT2010-23160[R]. New York:ASME, 2010.
[48] WU C H. A general though-flow theory of fluid flow with subsonic or supersonic velocity in turbomachines of arbitrary hub and casing shapes:TN2302[R]. Washington,D.C.:NACA, 1951.
[49] WU C H. A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-. radial, and mixed-flow types:TN 2604[R]. Washington,D.C.:NASA, 1952.
[50] NOVAK R A. Streamline curvature computing procedures for fluid-flow problems[J]. Journal of Engineering for Power, 1967, 89(4):478-490.
[51] SMITH JR L H. The radial-equilibrium equation of turbomachinery[J]. Journal of Engineering for Power, 1966, 88(1):1-12.
[52] 李根深, 陈乃兴, 强国芳. 船用燃气轮机轴流式叶轮机械气动热力学:原理、设计与试验研究)[M]. 北京:国防工业出版社, 1980:102-103. LI G S, CHEN N X, QIANG G F. Aerothermodynamics of axial turbomachinery in marine gas turbine:Principle, design, and test[M]. Beijing:National Defence Industry Press,1980:102-103 (in Chinese).
[53] 桂幸民. 轴流风扇压气机可控激波跨音级设计模型研究[D]. 北京:北京航空航天大学, 1993:25-28. GUI X M.The Research on the model of controllable shock wave used in the design of transonic axial fan/compressor stage[D]. Beijing:Beihang University,1993:25-28 (in Chinese).
[54] GUI X, ZHOU S. A transonic compressor design methodology including the influence of 3D passage shock waves:99-GT-078[R]. New York:ASME, 1999.
[55] SIMON J F. Contribution to throughflow modelling for axial flow turbomachines[D]. Liège:University of Liège, 2007:119-154.
[56] THOMAS J P, LÉONARD O. Toward a high order throughflow:investigation of the nonlinear harmonic method coupled with an immersed boundary method for the modeling of the circumferential stresses[J]. Journal of Turbomachinery, 2012, 134(1):011017.
[57] WAN K, JIN H L, JIN D H, et al. Influence of non-axisymmetric terms on circumferentially averaged method in fan/compressor[J]. Journal of Thermal Science, 2013, 22(1):13-22.
[58] BARALON S, ERIKSSON L E, HÅLL U. Evaluation of higher-order terms in the throughflow approximation using 3D navier-stokes computations of a transonic compressor rotor:99-GT-074[R]. New York:ASME, 1999.
[59] WENNERSTROM A J. Design of highly loaded axial-flow fans and compressors[M]. White River Junction:Concepts ETI, Inc., 2000:24.
[60] VAD J, KWEDIKHA A R A, HORVÁTH C, et al. Aerodynamic effects of forward blade skew in axial flow rotors of controlled vortex design[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2007, 221(7):1011-1023.
[61] MCNULTY G S, DECKER J J, BEACHER B F, et al. The impact of forward swept rotors on tip clearance flows in subsonic axial compressors[J]. Journal of Turbomachinery, 2004, 126(4):445-454.
[62] 唐明智, 金东海, 郭昕, 等. 叶轮机通流模型周向脉动应力项建模及分析[J]. 工程热物理学报, 2018, 39(9):1935-1944. TANG M Z, JIN D H, GUO X, et al. Modeling and analysis of the circumferential fluctuation stresses in turbomachinery throughflow model[J]. Journal of Engineering Thermophysics, 2018, 39(9):1935-1944 (in Chinese).
[63] TANG M Z, JIN D H, GUI X M. Modeling and numerical investigation of the inlet circumferential fluctuations of swept and bowed blades[J]. Journal of Thermal Science, 2017, 26(1):1-10.
[64] WU C H, BROWN C A. A theory of the direct and inverse problems of compressible flow past cascade of arbitrary airfoils[J]. Journal of the Aeronautical Sciences, 1952, 19(3):183-196.
[65] WU C, BROWN C, PRIAN V. An approximate method of determining the subsonic flow in an arbitrary stream filament of revolution cut by arbitrary turbomachine blades:TN2702[R]. Washington, D.C.:NACA, 1952.
[66] THOMAS J P, LÉONARD O. Investigating circumferential non-uniformities in throughflow calculations using an harmonic reconstruction:GT2008-50328[R]. New York:ASME, 2008.
[67] YUE Z X, LI Z F, JIN D H, et al. A model of inlet circumferential fluctuation in compressor cascades:GT2020-16266[R]. New York:ASME, 2020.
[68] BRUNTON S L, NOACK B R, KOUMOUTSAKOS P. Machine learning for fluid mechanics[J]. Annual Review of Fluid Mechanics, 2020, 52:477-508.
文章导航

/