综述

液体火箭发动机结构动力学设计关键技术综述

  • 杜大华 ,
  • 李斌
展开
  • 1.液体火箭发动机技术重点实验室,西安 710100
    2.航天推进技术研究院,西安 710100
.E-mail: cascddh@sina.com.cn

收稿日期: 2022-05-31

  修回日期: 2022-06-20

  录用日期: 2022-09-15

  网络出版日期: 2022-09-30

基金资助

国家重点基础研究发展计划(613321);装备预研共用技术项目(41410040202)

Key structural dynamic design technologies in liquid rocket engines: Review

  • Dahua DU ,
  • Bin LI
Expand
  • 1.Science and Technology on Liquid Rocket Engines Laboratory,Xi’an 710100,China
    2.Academy of Aerospace Propulsion Technology,Xi’an 710100,China

Received date: 2022-05-31

  Revised date: 2022-06-20

  Accepted date: 2022-09-15

  Online published: 2022-09-30

Supported by

National Key Basic Research and Development Program(613321);Equipment Pre-research Common Technology Project(41410040202)

摘要

随着液体火箭发动机技术的发展,结构动力学问题成为影响发动机寿命及可靠性的关键技术之一。经过多年努力,发动机结构从最初的静强度、安全寿命设计思想逐步发展为以动静强度联合、经济寿命设计为指导的研制理念和方法,并在型号中得到了成功应用,使发动机结构的工作可靠性得以大幅度提高。由于新型号火箭发动机结构的日益大型复杂化及工作环境的极端严酷性,为满足高性能、高可靠性、轻量化与可重复使用的研制需求,发动机结构动力学设计技术问题亟待解决。本文在分析发动机结构中典型动力学问题的基础上,梳理并重点介绍了载荷预计、动力学建模及模型修正、动强度评估与寿命评定、结构动力学优化及抗疲劳设计等关键技术,最后给出研究总结及展望。希望本文为液体火箭发动机结构动力学设计技术的发展提供支撑。

本文引用格式

杜大华 , 李斌 . 液体火箭发动机结构动力学设计关键技术综述[J]. 航空学报, 2023 , 44(10) : 27554 -027554 . DOI: 10.7527/S1000-6893.2022.27554

Abstract

With the development of liquid rocket engine technologies, structural dynamic problems become one of the key factors affecting the life and reliability of engines. In the past decades, the design concepts and methods of the engine gradually developed from the initial static strength and safety life design to the combination of dynamic and static strength, and economic life design, which were widely used in engines, significantly improving the working reliability of the engine structures. However, the increasing size and complex structure and the extreme harshness of the working environment for the new rocket engines require urgent solution to the technical problems of engine structural dynamic design to meet the needs of high performance, high reliability, light weight and reusability. This paper reviews the key technologies such as load prediction, dynamic modeling and model updating, dynamic strength assessment and life prediction, and anti-fatigue design on account of dynamics optimization, based on the analysis of typical dynamic problems in engine structures. The research summary and prospect are also presented. This review will provide guidance for the development of structural dynamic design technology of liquid rocket engines.

参考文献

1 黄道琼, 王振, 杜大华. 大推力液体火箭发动机中的动力学问题[J]. 中国科学: 物理学 力学 天文学201949(2): 23-34.
  HUANG D Q, WANG Z, DU D H. Structural dynamics of the large thrust liquid rocket engines[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 201949(2): 23-34 (in Chinese).
2 王彬文, 陈先民, 苏运来, 等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报202142(5): 524651.
  WANG B W, CHEN X M, SU Y L, et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronautica et Astronautica Sinica202142(5): 524651 (in Chinese).
3 Department of Defense Handbook. Engine structural integrity program (ENSIP): MIL-H [S]. NPFC,2004 .
4 ESA Requirements and Standard Division. Spacecraft mechanical loads analysis handbook: ECSS-E- [S]. Noordwijk : ESA Requirements and Standard Division,2013.
5 NASA.Dynamic environmental criteria: NASA-HDBK-7005 [R].Washington,D.C.:NASA, 2001.
6 NASA. Load analyses of spacecraft and payloads : NASA-STD-5002[S]. Washington,D.C.:NASA, 2019.
7 ESA Requirements and Standard Division. Space engineering: Structure finite element models: ECSS-E-ST-32-03C-2008 [S]. Noordwijk : ESA Requirements and Standard Division,2008.
8 NASA. Strength and life assessment requirements for liquid-fueled space propulsion system engines : NASA-STD-5012[S]. Washington,D.C.:NASA, 2016.
9 Force Air, Space and Missile Systems Center. Evaluation and test requirements for liquid rocket engines: SMC-S-025 [S]. 2017.
10 邱吉宝, 张正平, 向树红. 结构动力学及其在航天工程中的应用[M]. 合肥: 中国科学技术大学出版社, 2015.
  QIU J B, ZHANG Z P, XIANG S H. Structural dynamics and its applications in space engineering[M]. Hefei: University of Science and Technology of China Press, 2015 (in Chinese).
11 中国飞机强度研究所. 航空结构强度技术[M]. 北京: 航空工业出版社, 2013.
  Aircraft Strength Research Institute of China. Aircraft structure strength technology[M]. Beijing: Aviation Industry Press, 2013 (in Chinese).
12 谭永华. 液体火箭发动机结构动力学理论及工程应用[M]. 北京: 中国宇航出版社, 2022.
  TAN Y H. Structural dynamics theory and engineering application of liquid rocket engine[M]. Beijing: China Aerospace Publishing House, 2022 (in Chinese).
13 MAHYAR N, HASAN K, LIANG G Z. Modeling the effect of reusability on the performance of an existing LPRE[J]. Acta Astronautica2021181: 201-216.
14 HARRY C I. Characteristics of space shuttle main engine failures[C]∥23rd Joint Propulsion Conference. Reston: AIAA, 1987.
15 荣克林, 王帅. 航天装备结构动力学问题总结[J]. 强度与环境201643(2): 1-8.
  RONG K L, WANG S. Characterization and simulation of pressure shock environment[J]. Structure & Environment Engineering201643(2): 1-8 (in Chinese).
16 SEIJS M V V D, KLERK D D, RIXEN D J. General framework for transfer path analysis: History, theory and classification of techniques[J]. Mechanical Systems and Signal Processing201668-69: 217-244.
17 CHOI H G, THITE A N, THOMPSON D J. Comparison of methods for parameter selection in Tikhonov regularization with application to inverse force determination[J]. Journal of Sound and Vibration2007304(3-5): 894-917.
18 CHRISTENSEN E, BROWN A, FRADY G. Calculation of dynamic loads due to random vibration environemnts in rocket engine systems[C]∥48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
19 BELELLOCH P. Matching random response[C]∥Presented at Spacecraft and Launch Vehicle Dynamic Environments Workshop, 2009.
20 LU G L, ZHANG X N, XIE S L. Bayesian identification of dynamic loads in the rocket engine[C]∥25th International Congress on Sound and Vibration, 2018.
21 杨智春, 贾有. 动载荷识别方法的研究进展[J]. 力学学报201547(2): 384.
  YANG Z C, JIA Y. Research progress of dynamic load identification methods[J]. Chinese Journal of Theoretical and Applied Mechanics201547(2): 384 (in Chinese).
22 路广霖, 罗亚军, 张希农, 等. 基于加权正则化的火箭发动机振动传递路径分析[J]. 振动与冲击201938(9): 271-276.
  LU G L, LUO Y J, ZHANG X N, et al. Vibration transfer path analysis of rocket engine based on weighted regularization[J]. Journal of Vibration and Shock201938(9): 271-276 (in Chinese).
23 YAN S, LI B, LI F. Dynamic load identification of a second stage liquid rocket engine based on Tikhonov regularization method[C]∥International Astronautical Congress, 2016.
24 ZHOU Y F, LI H, LUO Z. An accelerated editing method of multiaxial load spectrums for durability testing[J]. Engineering Fracture Mechanics2022270: 108569.
25 SHANGGUAN W B, ZHENG G F, RAKHEJA S,et al. A method for editing multi-axis load spectrums based on the wavelet transforms[J]. Measurement2020162: 107903.
26 LIU X N, ZHAO X Z, LIU X A, et al. A load spectrum editing method of time-frequency for rubber isolators based on the continuous wavelet transform[J]. Measurement2022198: 111374.
27 HYUN C, BOO S H, LEE P S. Improving the computational efficiency of the enhanced AMLS method[J]. Computers & Structures2020228: 106158.
28 WU L, TISO P, VAN KEULEN F. Interface reduction with multilevel Craig-Bampton substructuring for component mode synthesis[J]. AIAA Journal201856(5): 2030-2044.
29 杜大华, 贺尔铭, 李锋. 基于多重动态子结构法的大型复杂结构动力分析技术[J]. 推进技术201839(8): 1849-1855.
  DU D H, HE E M, LI F. Dynamics analysis technology of large-scale complex structures based on multilevel dynamic substructure method[J]. Journal of Propulsion Technology201839(8): 1849-1855 (in Chinese).
30 PENG H J, LI F, KAN Z Y. A novel distributed model predictive control method based on a substructuring technique for smart tensegrity structure vibrations[J]. Journal of Sound and Vibration2020471: 115171.
31 DU D H, HE E M, LI F, et al. Using the hierarchical Kriging model to optimize the structural dynamics of rocket engines[J]. Aerospace Science and Technology2020107: 106248.
32 ZHANG B, XIANG Y, HE P, et al. Study on prediction methods and characteristics of ship underwater radiated noise within full frequency[J]. Ocean Engineering2019174: 61-70.
33 GU Y W, NIE X, YAN A G, et al. Experimental and numerical study on vibration and structure-borne noise of high-speed railway composite bridge[J]. Applied Acoustics2022192: 108757.
34 SONG H Y, ZHANG J. Structural reliability analysis based on interval analysis method in statistical energy analysis framework[J]. Mechanics Research Communications2021117: 103787.
35 闫松, 李斌, 李锋. 结构动力学模型修正技术在液体火箭发动机中的应用[J]. 火箭推进201844(1): 27-35, 52.
  YAN S, LI B, LI F. Application of structural dynamic model updating technique in liquid rocket engine[J]. Journal of Rocket Propulsion201844(1): 27-35, 52 (in Chinese).
36 SITI S S, SAKHIAH A K, ADIZA J, et al. Operational modal analysis and finite element model updating of ultra-high-performance concrete bridge based on ambient vibration test[J]. Case Studies in Construction Materials202216: e01117.
37 YAN S, LI B, LI F, et al. Finite element model updating of liquid rocket engine nozzle based on modal test results obtained from 3-D SLDV technique[J]. Aerospace Science and Technology201769: 412-418.
38 CONG S, HU S L J, LI H J. FRF-based pole-zero method for finite element model updating[J]. Mechanical Systems and Signal Processing2022177: 109206.
39 LAURA I, ILARIA V, NICOLA C, et al. An innovative continuous Bayesian model updating method for base-isolated RC buildings using vibration monitoring data[J]. Mechanical Systems and Signal Processing2020139: 106600.
40 CHUANG Y T. Mass matrix updating for model validation[C]∥Proceeding of the 15th International Modal Analysis Conference, 1997.
41 LINK M, FRISWELL M I. Working group 1: Generation of validated structural dynamic models—results of a benchmark study utilising the GARTEUR SM-AG19 test-bed[J]. Mechanical Systems and Signal Processing200317(1): 9-20.
42 SCHIJVE J. Fatigue of structures and materials[M]. Dordrecht: Kluwer Academic, 2001.
43 SCHIJVE J. Fatigue of structures and materials in the 20th century and the state of the art[J]. International Journal of Fatigue200325(8): 679-702.
44 BARTLEY CHO J D, PALM T, RANATUNGA V. Overview of composite airframe life extension program project 2: Tools for assessing the durability and damage tolerance of fastened composite joints[C]∥2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2018.
45 WANG T S, HE X F, WANG J Y, et al. Detail fatigue rating method based on bimodal Weibull distribution for DED Ti-6.5Al-2Zr-1Mo-1V titanium alloy[J]. Chinese Journal of Aeronautics202235(4): 281-291.
46 SUN J Z, DING Z H, HUANG Q. Development of EIFS-based corrosion fatigue life prediction approach for corroded RC beams[J]. Engineering Fracture Mechanics2019(209):1-16.
47 LIAN Y D, GAO L Q, ZHANG Y L, et al. A normalized equivalent initial flaw size model to predict fatigue behavior of metallic materials[J]. Engineering Fracture Mechanics2020237: 107256.
48 轩福贞, 赵鹏. 高温构件循环黏塑性行为及本构理论[M]. 北京: 科学出版社, 2021.
  XUAN F Z, ZHAO P. Cyclic viscoplasticity behavior and constitutive theory of high temperature structures[M]. Beijing: Science Press, 2021 (in Chinese).
49 LIN J H. Durability and damage tolerance analysis methods for lightweight aircraft structures: Review and prospects[J]. International Journal of Lightweight Materials and Manufacture20225(2): 224-250.
50 刘士杰, 梁国柱. 航天飞机主发动机高压燃料涡轮泵的故障模式[J]. 航空动力学报201530(3): 611-626.
  LIU S J, LIANG G Z. Failure modes of space shuttle main engine high-pressure fuel turbopump[J]. Journal of Aerospace Power201530(3): 611-626 (in Chinese).
51 YE S, ZHANG C C, ZHANG P Y, et al. Fatigue life prediction of nickel-based GH4169 alloy on the basis of a multi-scale crack propagation approach[J]. Engineering Fracture Mechanics2018199: 29-40.
52 HAN J B, WANG R Q, HU D Y, et al. Multi-scale analysis and experimental research for turbine guide vanes made of 2D braided SiCf/SiC composites in high-cycle fatigue regime[J]. International Journal of Fatigue2022156: 106697.
53 SAIKUMAR R Y, PATRICK E L, JACOB D H, et al. A digital twin feasibility study (Part I): Non-deterministic predictions of fatigue life in aluminum alloy 7075-T651 using a microstructure-based multi-scale model[J]. Engineering Fracture Mechanics2020228: 106888.
54 荣克林, 洪洁. 高性能系统-航天飞行器的力学环境试验与评估[J]. 强度与环境201744(6): 1-7.
  RONG K L, HONG J. Study of experiment and evaluation about mechanical environment for high performance system[J]. Structure & Environment Engineering201744(6): 1-7 (in Chinese).
55 姜金朋, 刘志超, 刘筑, 等. 火箭发动机涡轮叶片疲劳寿命可靠性分析[J]. 火箭推进202046(2): 57-63.
  JIANG J P, LIU Z C, LIU Z, et al. Reliability analysis of fatigue life for rocket engine turbine blade[J]. Journal of Rocket Propulsion202046(2): 57-63 (in Chinese).
56 JIANG F, DING Y L, SONG Y S, et al. Digital twin-driven framework for fatigue life prediction of steel bridges using a probabilistic multiscale model: Application to segmental orthotropic steel deck specimen[J]. Engineering Structures2021241: 112461.
57 SONG L K, BAI G C, FEI C W. Dynamic surrogate modeling approach for probabilistic creep-fatigue life evaluation of turbine disks[J]. Aerospace Science and Technology201995: 105439.
58 孙侠生. 飞机结构强度新技术[M]. 北京: 航空工业出版社, 2017.
  SUN X S. New technology of aircraft structural strength[M]. Beijing: Aviation Industry Press, 2017 (in Chinese).
59 JEREZ D J, JENSEN H A, BEER M. Reliability-based design optimization of structural systems under stochastic excitation: An overview[J]. Mechanical Systems and Signal Processing2022166: 108397.
60 CHENG J, WANG R, LIU Z Y,et al. Robust equilibrium optimization of structural dynamic characteristics considering different working conditions[J]. International Journal of Mechanical Sciences2021210: 106741.
61 SACKHEIM R L. SSME 0523 incident investigation[R]. Washington,D.C.:NASA, 2002.
62 WANG C M, XIANG L, TAN Y H, et al. Experimental investigation of thermal effect on cavitation characteristics in a liquid rocket engine turbopump inducer[J]. Chinese Journal of Aeronautics202134(8): 48-57.
63 杨宝锋, 李斌, 陈晖, 等. 液体火箭发动机推进剂泵诱导轮与离心轮的匹配[J]. 航空学报201940(5): 122609.
  YANG B F, LI B, CHEN H, et al. Matching effect between inducer and impeller in a liquid rocket engine propellant pump[J]. Acta Aeronautica et Astronautica Sinica201940(5): 122609 (in Chinese).
64 LU Y P, TAN L, HAN Y D,et al. Cavitation-vibration correlation of a mixed flow pump under steady state and fast start-up conditions by experiment[J]. Ocean Engineering2022251: 111158.
65 WU Q, HUANG B, WANG G, et al. Numerical study on cavitating flow-induced vibration of liquid rocket engine inducer[J]. IOP Conference Series: Earth and Environmental Science2019240: 062045.
66 MüLLER M A, TRAUDT T, SCHLECHTRIEM S. Numerical calculation of the rotordynamic coefficients of a LOX-Turbopump seal for the LUMEN LOX/LNG demonstrator rocket engine[J]. Journal of Physics: Conference Series20211909(1): 012049.
67 HOLZINGER F, WARTZEK F, SCHIFFER H P, et al. Self-excited blade vibration experimentally investigated in transonic compressors: Acoustic resonance[J]. Journal of Turbomachinery2016138(4): 041001.
68 LU Z B, HALIM D, CHENG L. Flow-induced noise control behind bluff bodies with various leading edges using the surface perturbation technique[J]. Journal of Sound and Vibration2016369: 1-15.
69 DU D H, HE E M, HUANG D Q, et al. Intense vibration mechanism analysis and vibration control technology for the combustion chamber of a liquid rocket engine[J]. Journal of Sound and Vibration2018437: 53-67.
70 SONG J W, SUN B. Damage localization effects of the regeneratively-cooled thrust chamber wall in LOX/methane rocket engines[J]. Chinese Journal of Aeronautics201831(8): 1667-1678.
71 WOLFGANG A, JUSTIN S H, DMITRY S,et al. Experimental investigation of self-excited combustion instabilities with injection coupling in a cryogenic rocket combustor[J]. Acta Astronautica2018151: 655-667.
72 ZHAO X, SAMI B, ZHANG S J. Aeroelastic response of rocket nozzles to asymmetric thrust loading[J]. Computers & Fluids201376: 128-148.
73 FELIX H, CHRISTOPH V S, TORBEN F,et al. Experimental lifetime study of regeneratively cooled rocket chamber walls[J]. International Journal of Fatigue2020138: 105649.
74 LIU S J, LIANG G Z, LIU J C, et al. Research on the fatigue of small impulse turbine blade based on the numerical simulation and experimental tests[J]. International Journal of Aerospace Engineering20212021: 1-13.
75 EVGENIJ A S, IGOR N B, VLADIMIR G B, et al. Numerical study of operational processes in a GOx-kerosene rocket engine with liquid film cooling[J]. Propulsion and Power Research20209(2): 132-141.
76 BEATRICE L, MATTEO F, FRANCESCO N. Modeling liquid rocket engine coolant flow and heat transfer in high roughness channels[J]. Aerospace Science and Technology2022126: 107672.
77 SONG J W, SUN B, XING Y Y. Thermo-structural behavior of thermal barrier coatings for thrust chamber applications[J]. International Communications in Heat and Mass Transfer2022130: 105776.
78 HISHAM E, ZHANG X B, MOHAMMEDNOUR G, et al. Heat transfer enhancement of hydrogen rocket engine chamber wall by using V-shape rib[J]. International Journal of Hydrogen Energy202247(16): 9775-9790.
79 CHEN M Y, LIN L, DU D H,et al. Safety assessment of the small welded pipe system by the test and FEA[J]. International Journal of Pressure Vessels and Piping2021194: 104523.
80 GAO P X, YU T, ZHANG Y L,et al. Vibration analysis and control technologies of hydraulic pipeline system in aircraft: A review[J]. Chinese Journal of Aeronautics202134(4): 83-114.
81 Military and Government Specs & Standards. Assessment of flexible lines for flow induced vibration(Rev E): M [S]. Military and Government Specs & Standards (Naval Publications and Form Center) (NPFC), 1991.
82 ASMA M, RüDIGER U F V B U P, MOHAMMAD A E. A probabilistic study of welding residual stresses distribution and their contribution to the fatigue life[J]. Engineering Failure Analysis2020118: 104787.
83 SCHR?DERS S, FIDLIN A. Asymptotic analysis of self-excited and forced vibrations of a self-regulating pressure control valve[J]. Nonlinear Dynamics2021103(3): 2315-2327.
84 MIAO Y, JIANG Y C, QIU Z H, et al. Vibration transients of reservoir-pipe-valve system caused by water hammer[J]. Journal of Theoretical and Applied Mechanics202058(4): 1037-1048.
85 LU G L, LUO Y J, XIE S L, et al. Transfer path analysis of rocket engine based on weighted Tikhonov regularization[J]. International Journal of Applied Electromagnetics and Mechanics201959(3): 1019-1027.
86 CAO Y F, GU X J, ZHU J H, et al. Precise output loads control of load-diffusion components with topology optimization[J]. Chinese Journal of Aeronautics202033(3): 933-946.
87 王鹏辉, 李哲, 童军, 等. 基于频率管理的装备振动环境适应性提升[J]. 装备环境工程202118(9): 7-13.
  WANG P H, LI Z, TONG J, et al. Improvement of equipment vibration environment adaptability based on frequency management[J]. Equipment Environmental Engineering202118(9): 7-13 (in Chinese).
文章导航

/