基于LNG的高速飞机热管理系统设计建模与分析
收稿日期: 2022-05-31
修回日期: 2022-06-29
录用日期: 2022-09-15
网络出版日期: 2022-09-30
基金资助
国家自然科学基金(52272409);国家重点实验室基金(JSY6142219202105)
Design simulation of thermal management system for hypersonic aircraft based on liquid natural gas
Received date: 2022-05-31
Revised date: 2022-06-29
Accepted date: 2022-09-15
Online published: 2022-09-30
Supported by
National Natural Science Foundation of China(52272409);National Key Laboratory Foundation of China(JSY6142219202105)
针对高速飞机长时高速飞行过程中面临的机载热管理系统潜在超温问题,引入消耗性冷源液化天然气(LNG)设计了一种新型的热管理系统架构。面向最高巡航马赫数为7的完整飞行剖面,通过热管理系统动态仿真,对比分析了引入LNG前后,不同初始条件下机载设备、机身结构和发动机滑油冷却系统的温度。结果表明高速飞机通过引入LNG来提升热管理系统性能具有可行性。在未引入LNG并以燃油为主要热沉时,热管理系统在高速段和返航时由于热沉不足导致系统温控能力下降,机载系统可能存在长时间的超温现象。引入LNG后在高速段和返航时解决了超温问题,并得到了不同起飞环境温度下LNG的消耗量及引入LNG后的体积和重量代价,通过数据拟合得到LNG消耗量与起飞环境温度的经验公式,可为同类型系统设计提供了参考。
成超乾 , 于鹏 , 谢宗齐 , 李洋 , 焦宗夏 . 基于LNG的高速飞机热管理系统设计建模与分析[J]. 航空学报, 2023 , 44(10) : 127545 -127545 . DOI: 10.7527/S1000-6893.2022.27545
To solve the overheated problem of the airborne Thermal Management System (TMS) on hypersonic aircraft.In this paper, when the hypersonic aircraft flies at high speed for a long time, designed a new type of TMS architecture by introducing expendable heat sink Liquid Natural Gas (LNG). The maximum cruise speed of the flight profile is set to Mach number 7, the dynamic simulation of the TMS is carried out, analyzed the temperature of equipment, fuselage structure and engine oil when the hypersonic aircraft take off at different temperatures, compared the performance of TMS with and without LNG. The results show that the TMS equipped with LNG is feasible and the performance of TMS has been improved. If the TMS only use fuel and ram air as heat sink, not equipped with LNG, it will be overheated for a long time because the fuel heat sink is insufficient when hypersonic aircraft flies at high speed for a long time or return. After equipped with LNG, the overheated problem was solved. Meanwhile analyzed the consumption of LNG and the cost of aircraft volume and weight under different take-off temperatures. The empirical formula for LNG and take-off temperature are obtained by data fitting, It can provide a reference for the design of hypersonic aircraft’s TMS.
1 | 颜瑾钊. 赫尔墨斯高超声速客机研制进展[J]. 航空动力,2020(3): 11-14. |
YAN J Z. The progress of Hermeus hypersonic jet[J]. Aerospace Power, 2020(3): 11-14 (in Chinese). | |
2 | 董芃呈,韩玉琪,刘金超. 宽适应性高超声速空天动力技术发展分析[J]. 航空动力,2020(6): 25-30. |
DONG P C, HAN Y Q, LIU J C. Development analysis of hypersonic aerospace power technology with wide adaptability[J]. Aerospace Power, 2020(6): 25-30 (in Chinese). | |
3 | 王俊伟,刘都群,张灿. 2021年国外高超声速领域发展综述[J]. 战术导弹技术,2022(1):29-37. |
WANG J W, LIU D Q, ZHANG C. Review of hypersonic development abroad in 2021[J]. Tactical Missile Technology,2022(1):29-37 (in Chinese). | |
4 | 汪丰麟,朱启超,张杰. 美国高超声速武器发展现状与得失简析[J]. 国防科技,2022,43(1):38-51. |
WANG F L, ZHU Q C, ZHANG J. Analyzing the development of hypersonic weapons by the US[J]. National Defense Technology,2022,43(1):38-51 (in Chinese). | |
5 | 王在铎,王惠,丁楠,等. 高超声速飞行器技术研究进展[J]. 科技导报,2021,39(11):59-67. |
WANG Z D, WANG H, DING N,et al. Research on the development of hypersonic vehicle technology[J]. Science & Technology Review,2021,39(11):59-67 (in Chinese). | |
6 | 马娜,门薇薇,王志强,等. SR-72高超声速飞机研制分析[J]. 飞航导弹,2017(1):14-20. |
MA N, MEN W W, WANG Z Q,et al. Development and analysis of SR-72 hypersonic aircraft[J]. Aerodynamic Missile Journal,2017(1):14-20 (in Chinese). | |
7 | 李文杰,林旭斌. NASA启动高超声速飞机研究[J]. 飞航导弹,2021(5):9-12. |
LI W J, LIN X B. NASA launches research on hypersonic aircraft[J]. Aerodynamic Missile Journal,2021(5):9-12 (in Chinese). | |
8 | 廖孟豪,李宪开,窦相民. 美国高超声速作战飞机气动布局演化分析[J]. 航空科学技术,2020, 31(11): 3-6. |
LIAO M H, LI X K, DOU X M. Evolution analysis of aerodynamic configuration of hypersonic military aircraft in USA[J]. Aeronautical Science & Technology, 2020, 31(11): 3-6 (in Chinese). | |
9 | 王佩广,刘永绩,王浚. 高超声速飞行器综合热管理系统方案探讨[J]. 中国工程科学,2007,9(2):44-48. |
WANG P G, LIU Y J, WANG J. Discussion on integrated environment control/thermal management system concepts for hypersonic vehicle[J]. Engineering Science, 2007, 9(2): 44-48 (in Chinese). | |
10 | 李新春,王中伟. 高超声速飞行器的热电技术热管理系统参数[J]. 国防科技大学学报,2016,38(2):43-47,86. |
LI X C, WANG Z W. Parametric of an integrated thermoelectric generation thermal management system for hypersonic vehicle[J]. Journal of National University of Defense Technology, 2016, 38(2): 43-47, 86 (in Chinese). | |
11 | 刘建,侯金丽,张波,等. 高超声速组合循环发动机综合热管理技术需求分析[C] ∥ 中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议, 2017: 74-83. |
LIU J, HOU J L, ZHANG B,et al. Demand analysis of comprehensive thermal management technology for hypersonic combined cycle engine[C] ∥ Proceedings of the 38th Technical Exchange Conference of China Aerospace Third Professional Information Network and the 2nd Aerospace Power Joint Conference, 2017: 74-83 (in Chinese). | |
12 | 桂业伟,刘磊,魏东. 长航时高超声速飞行器的综合热效应问题[J]. 空气动力学学报,2020,38(4):641-650. |
GUI Y W, LIU L, WEI D. Combined thermal phenomena issues of long endurance hypersonic vehicles [J]. Acta Aerodynamica Sinica,2020,38(4):641-650 (in Chinese). | |
13 | MAO Y F, Li Y Z, WANG J X,et al. Cooling ability/capacity and exergy penalty analysis of each heat sink of modern supersonic aircraft[J]. Entropy (Basel Switzerland), 2019, 21(3): 223. |
14 | 于喜奎,毛羽丰. 高超声速飞机热管理系统控制模型构建与仿真[J]. 航空动力学报,2018,33(3):741-751. |
YU X K, MAO Y F. Research and simulation of hypersonic aircraft thermal management system and its control model[J]. Journal of Aerospace Power, 2018, 33(3):741-751 (in Chinese). | |
15 | 马喆,张兴娟,杨春信. 高超声速飞行器热防护的布雷顿热电转化技术[J]. 战术导弹技术,2014(4):20-25. |
MA Z, ZHANG X J, YANG C X. Analysis of brayton thermoelectric conversion method for thermal protection of hypersonic aircraft[J]. Tactical Missile Technology, 2014(4): 20-25 (in Chinese). | |
16 | 甄华萍,蒋崇文. 高超声速技术验证飞行器HTV-2综述[J]. 飞航导弹,2013(6):7-13. |
ZHEN H P, JIANG C W. Summary of hypersonic technology verification of aircraft HTV-2[J]. Aerodynamic Missile Journal, 2013(6): 7-13 (in Chinese). | |
17 | 高峰,袁修干. 高性能战斗机燃油热管理系统[J]. 北京航空航天大学学报, 2009, 35(11): 1353-1356. |
GAO F, YUAN X G. Fuel thermal management system of high performance fighter aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(11): 1353-1356 (in Chinese). | |
18 | ROBERTS R A, NUZUM S R, WOLFF M. Liquefied natural gas as the next aviation fuel[C] ∥ 13th International Energy Conversion Engineering Conference. Reston: AIAA, 2015. |
19 | 李宪开,王霄,柳军,等. 水平起降高超声速飞机气动布局技术研究[J]. 航空科学技术, 2020, 31(11): 7-13. |
LI X K, WANG X, LIU J, et al. Research on the aerodynamic layout design for the horizontal take-off and landing hypersonic aircraft[J]. Aeronautical Science & Technology, 2020, 31(11): 7-13 (in Chinese). | |
20 | 孙启荣. 组合动力技术比较及TBCC关键技术展望[J]. 科技视界, 2021(10): 50-52. |
SUN Q R. Comparison of combined power technologies and prospect of key technologies of TBCC[J]. Science & Technology Vision, 2021(10): 50-52 (in Chinese). | |
21 | 刘建,王清平. 空天组合动力对先进结构热防护技术的需求分析[C] ∥ 中国航天第三专业信息网第三十九届技术交流会暨第三届空天动力联合会议, 2018: 218-228. |
LIU J, WANG Q P. Demand analysis of aerospace combined power for advanced structural thermal protection technology[C] ∥ Proceedings of the 39th Technical Exchange Conference and the 3rd Aerospace Power Joint Conference of China Aerospace Third Professional Information Network, 2018: 218-228 (in Chinese). | |
22 | 侯淋,刘青,张香文. 面向高超声速飞行的碳氢燃料吸热反应研究进展[J]. 化学工业与工程,2022,39(5):1-10. |
HOU L, LIU Q, ZHANG X W. Progress on endothermic reactions of hydrocarbon fuel for hypersonic flight[J]. Chemical Industry and Engineering, 2022, 39(5): 1-10 (in Chinese). | |
23 | 白帅帅, 糜基, 姚晨阳, 等. 高能量密度碳氢燃料JP-10的热裂解研究进展[J]. 石油学报(石油加工), 2022, 38(4):980-994. |
BAI S S, MI J, YAO C Y, et al. Research advances in pyrolysis of high energy-density hydrocarbon fuel JP-10[J]. Acta Petrolei Sinica(Petroleum Processing Section),2022, 38(4): 980-994 (in Chinese). | |
24 | 姬亚军, 杨鸿辉, 刘朝晖, 等. 吸热型碳氢燃料高温结焦抑制方法研究进展[J]. 石油学报(石油加工), 2021, 37(2): 447-457. |
JI Y J, YANG H H, LIU Z H, et al. Research progress of coking suppression methods for endothermic hydrocarbon fuels at high temperatures[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2021, 37(2): 447-457 (in Chinese). |
/
〈 |
|
〉 |