结冰和防冰研究专栏

短舱防冰系统三维内外流耦合计算方法

  • 郑梅 ,
  • 冯丽娟 ,
  • 秦娜 ,
  • 尹金鸽
展开
  • 中国航发商用航空发动机有限责任公司,上海  200241
.E-mail: zhengmei@acae.com.cn

收稿日期: 2022-05-12

  修回日期: 2022-06-09

  录用日期: 2022-09-19

  网络出版日期: 2022-09-30

基金资助

国家科技重大专项(J2019-III-0010-0054)

3D computational method for conjugate heat transfer between internal and external flow of nacelle anti-icing system

  • Mei ZHENG ,
  • Lijuan FENG ,
  • Na QIN ,
  • Jinge YIN
Expand
  • Shanghai Aircraft Design and Research Institute,Commercial Aircraft Corporation of China,Ltd. ,Shanghai  200241,China

Received date: 2022-05-12

  Revised date: 2022-06-09

  Accepted date: 2022-09-19

  Online published: 2022-09-30

Supported by

National Science and Technology Major Project(J2019-III-0010-0054)

摘要

为提高防冰性能评估效率,更好地支撑发动机短舱防冰系统设计工作,基于松散耦合方法开展了适用于短舱进气道笛形管防冰系统的三维内外流耦合仿真计算方法研究。将三维全尺寸短舱进气道计算模型分割为内、外流计算域,并以防冰腔外表面温度和换热系数作为计算域之间的交互数据,以实现内外流耦合迭代。根据干、湿空气条件下防冰表面流动传热特性,考虑湿空气条件下由过冷水滴撞击产生的质量与能量源项,同时引入短舱进气道周向非对称特性导致的三维溢流效应影响,总结了干、湿空气条件下短舱进气道防冰系统内外流松散耦合迭代策略。计算结果表明:在干空气条件下防冰内外流松散耦合迭代仅需3个轮次即可收敛;在湿空气条件下,受防冰表面溢流影响,内外流耦合迭代4个轮次后趋于收敛。

本文引用格式

郑梅 , 冯丽娟 , 秦娜 , 尹金鸽 . 短舱防冰系统三维内外流耦合计算方法[J]. 航空学报, 2023 , 44(1) : 627425 -627425 . DOI: 10.7527/S1000-6893.2022.27425

Abstract

To improve the efficiency of anti-icing performance evaluation and support the design of nacelle anti-icing system, a 3D computational method for conjugate heat transfer between internal and external flow of the nacelle inlet piccolo hot air anti-icing system is proposed based on the loose-coupling method. The external flow field, skin solid domain and internal flow field in the 3D nacelle model are divided into two computational domains. The wall temperature and heat transfer coefficient on the external surface of anti-icing chamber are taken as the interactive data between the internal and external domains to realize conjugate computation. According to the flow and heat transfer characteristics on the anti-icing surface under the dry and wet air conditions, the mass and energy source terms generated by supercooled water droplet impingement and the 3D runback effect caused by the circumferential asymmetry of nacelle inlet are considered, and the loose-coupling iterative strategies for the dry and wet air conditions are summarized. The results show that under the dry air condition, the calculation of conjugate heat transfer between internal and external flow can converge in 3 rounds of loose-coupling iteration; under the wet air condition, the calculation for nacelle inlet inner surface tends to converge after 4 rounds of iteration.

参考文献

1 POLITOVICH M K. Aircraft icing[M]. Salt Lake City: American Academic Press, 2003: 68-75.
2 杜雁霞, 李明, 桂业伟, 等. 飞机结冰热力学行为研究综述[J]. 航空学报201738(2): 30-41.
  DU Y X, LI M, GUI Y W, et al. Review of thermodynamic behaviors in aircraft icing process[J]. Acta Aeronautica et Astronautica Sinica201738(2): 30-41 (in Chinese).
3 李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报202142(S1): 107-122.
  LI H R, DUAN Y Y, ZHANG Y F, et al. Numerical method of ice-accretion software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica202142(S 1): 107-122 (in Chinese).
4 YANG Q, GUO X F, DONG W, et al. Ice accretion and aerodynamic effects on a turbofan engine nacelle under take-off conditions[J]. Aerospace Science and Technology2022126: 107571.
5 AL-KHALIL K M, KEITH T G, DE WITT K J. Icing calculations on a typical commercial jet engine inlet nacelle[J]. Journal of Aircraft199734(1): 87-93.
6 裘燮纲, 韩凤华. 飞机防冰系统[M]. 北京: 航空工业出版社, 1985: 44-58.
  QIU X G, HANG F H. Aircraft anti-icing system[M]. Beijing: Aviation Industry Press, 1985: 44-58 (in Chinese).
7 桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报201738(2): 6-17.
  GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica201738(2): 6-17 (in Chinese).
8 ROLLS-ROYCE. The jet engine[M]. Derby: Technical Publications Department, Rolls-Royce plc, 1996:147-151.
9 朱永峰, 方玉峰, 封文春. 某型飞机发动机短舱防冰系统设计计算[J]. 航空动力学报201227(6): 1326-1331.
  ZHU Y F, FANG Y F, FENG W C. Design and calculation of aircraft nacelle anti-icing system[J]. Journal of Aerospace Power201227(6): 1326-1331 (in Chinese).
10 常士楠, 杨波, 冷梦尧, 等. 飞机热气防冰系统研究[J]. 航空动力学报201732(5): 1025-1034.
  CHANG S N, YANG B, LENG M Y, et al. Study on bleed air anti-icing system of aircraft[J]. Journal of Aerospace Power201732(5): 1025-1034 (in Chinese).
11 郭之强. 笛形管热气防冰结构内外流动换热研究[D]. 上海: 上海交通大学, 2021: 106-133.
  GUO Z Q. Study on internal and external flow and heat transfer of piccolo hot air anti-icing structure[D]. Shanghai: Shanghai Jiao Tong University, 2021: 106-133 (in Chinese).
12 郁嘉, 赵柏阳, 卜雪琴, 等. 某型飞机发动机短舱热气防冰系统性能数值模拟[J]. 空气动力学学报201634(3): 302-307.
  YU J, ZHAO B Y, BU X Q, et al. Numerical simulation of the performance of an engine nacelle hot-air anti-icing system[J]. Acta Aerodynamica Sinica201634(3): 302-307 (in Chinese).
13 杨倩, 郭晓峰, 李芹, 等. 基于POD和代理模型的热气防冰性能预测方法[J]. 航空学报202344(1): 626992.
  YANG Q, GUO X F, LI Q, et al. Hot air anti-icing performance estimation method based on POD and surrogate model[J]. Acta Aeronautica et Astronautica Sinica202344(1):626992 (in Chinese).
14 郭之强, 郑梅, 董威, 等. 表面凸起对机翼热气防冰腔内换热强化的影响[J]. 航空学报201738(2): 86-95.
  GUO Z Q, ZHENG M, DONG W, et al. Influence of surface convex on heat transfer enhancement of wing hot air anti-icing system[J]. Acta Aeronautica et Astronautica Sinica201738(2): 86-95 (in Chinese).
15 SAEED F, AHMED K Z, OWES A O, et al. Anti-icing hot air jet heat transfer augmentation employing inner channels[J]. Advances in Mechanical Engineering202113(12): 168781402110662.
16 CHENG J C, CHEN Y M. Investigation of fluid flow and heat transfer characteristics for a thermal anti-icing system of a high-altitude and long-endurance UAV[J]. Journal of Mechanics202137: 467-483.
17 PAPADAKIS M, WONG S H, YEONG H W, et al. Icing tests of a wing model with a hot-air ice protection system[C]∥ AIAA Atmospheric and Space Environments Conference. Toronto: AIAA, 2012: 20107833.
18 GUO Z Q, ZHENG M, YANG Q, et al. Effects of flow parameters on thermal performance of an inner-liner anti-icing system with jets impingement heat transfer[J]. Chinese Journal of Aeronautics202134(9): 119-132.
19 HANNAT R, MORENCY F. Numerical validation of conjugate heat transfer method for anti-/ de-icing piccolo system[J]. Journal of Aircraft201451(1): 104-116.
20 周玉洁. 热气腔结构的优化设计与数值模拟[D]. 南京: 南京航空航天大学, 2010: 35-44.
  ZHOU Y J. Optimal design and numerical simulation of the hot air cavity structure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 35-44 (in Chinese).
21 GUO Z Q, GUO X F, YANG Q, et al. Heat transfer characteristics of unexpanded jet impingement in piccolo hot air anti-icing chamber[J]. Applied Thermal Engineering2022200: 117540.
22 卜雪琴, 林贵平, 郁嘉. 三维内外热耦合计算热气防冰系统表面温度[J]. 航空动力学报200924(11): 2495-2500.
  BU X Q, LIN G P, YU J. Three-dimensional conjugate heat transfer simulation for the surface temperature of wing hot-air anti-icing system[J]. Journal of Aerospace Power200924(11): 2495-2500 (in Chinese).
23 郁嘉, 卜雪琴, 林贵平, 等. 非结冰气象条件下机翼热气防冰系统数值模拟[J]. 空气动力学学报201634(5): 562-567.
  YU J, BU X Q, LIN G P, et al. Numerical simulation of a wing hot air anti-icing system in dry air conditions[J]. Acta Aerodynamica Sinica201634(5): 562-567 (in Chinese).
24 DE MATTOS B, OLIVEIRA G. Three-dimensional thermal coupled analysis of a wing slice slat with a piccolo tube[C]∥ 18th Applied Aerodynamics Conference. Denver: AIAA, 2000: 3921.
25 WONG S H, PAPADAKIS M, ZAMORA A. Computational investigation of a bleed air ice protection system[C]∥ 1st AIAA Atmospheric and Space Environments Conference. San Antonio: AIAA, 2009: 3966.
26 CROCE G, HABASHI W, GUEVREMONT G, et al. 3D thermal analysis of an anti-icing device using FENSAP-ICE[C]∥ 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998: 193.
27 李延, 郭涛. 基于松散耦合的三维热气防冰腔数值仿真[C]∥ 探索 创新 交流——第六届中国航空学会青年科技论坛文集(下册). 北京: 中国航空学会, 2014: 366-371.
  LI Y, GUO T. Numerical simulation of three dimensional thermal anti-icing chamber by loose couple method[C]∥ Exploration, Innovation and Exchange—Collection of the 6th Youth Science and Technology Forum of Chinese Society of Aeronautics and Astronautics (Volume II). Beijing: Chinese Society of Aeronautics and Astronautics, 2014: 366-371 (in Chinese).
28 LIU H H T, HUA J. Three-dimensional integrated thermodynamic simulation for wing anti-icing system[J]. Journal of Aircraft200441(6): 1291-1297.
29 杨秋明, 朱永峰, 刘清. 基于流-固耦合传热的热气防冰系统干空气飞行蒙皮温度场计算研究[J]. 空气动力学学报201634(6): 721-724.
  YANG Q M, ZHU Y F, LIU Q. Numerical study of skin temperature field on hot air anti-icing system in dry air flight based on fluid-solid coupled heat transfer[J]. Acta Aerodynamica Sinica201634(6): 721-724 (in Chinese).
30 王昆, 白俊强, 夏露, 等. 飞机热气防冰系统与冰脊预测的数值模拟[J]. 航空动力学报201429(11): 2694-2703.
  WANG K, BAI J Q, XIA L, et al. Numerical simulation of aircraft hot air anti-icing system and ice ridge prediction[J]. Journal of Aerospace Power201429(11): 2694-2703 (in Chinese).
31 朱剑鋆. 飞行防冰与结冰中的流动传热计算方法研究[D]. 上海: 上海交通大学, 2016: 18-34.
  ZHU J Y. Study on the computational methods of flow and heat transfer during in-flight anti-icing and icing[D]. Shanghai: Shanghai Jiao Tong University, 2016: 18-34 (in Chinese).
32 郑梅. 考虑水膜效应的防冰表面流动换热研究[D]. 上海: 上海交通大学, 2015: 66-73.
  ZHENG M. Study on flow and heat transfer of runback water on anti-icing surface[D]. Shanghai: Shanghai Jiao Tong University, 2015: 66-73 (in Chinese).
文章导航

/