基于自适应采样的高超声速飞行器气动热全局快速预示
收稿日期: 2022-05-09
修回日期: 2022-06-04
录用日期: 2022-09-15
网络出版日期: 2022-09-30
基金资助
国家级项目
Rapid prediction of global hypersonic vehicle aerothermodynamics based on adaptive sampling
Received date: 2022-05-09
Revised date: 2022-06-04
Accepted date: 2022-09-15
Online published: 2022-09-30
Supported by
National Level Project
高超声速飞行器热防护系统设计中高精度气动热分析模型使得设计计算成本不断增加,基于数据驱动的气动热环境预示方法受到广泛关注。针对有限高精度模型计算成本下提升全局预示精度的问题,提出一种基于模糊聚类的批量自适应采样方法。根据预示误差分布特征通过聚类采用超球分割构建采样影响域,兼顾误差较大的重点采样域与全局探索;通过当地误差评分系数加权构建采样拒绝域,减小新增样本冗余;结合maxmin准则在综合确定的重点采样空间中新增样本,提升采样质量,进而实现预示模型全局精度快速提升。数值测试算例表明,所提方法与One-Shot、APSFC、CV-Voronoi方法相比能有效降低所需采样规模,加速提升预示精度。通过类HTV-2飞行器气动热快速预示实例,验证了方法的有效性与工程实用性。
杨国涛 , 岳振江 , 刘莉 . 基于自适应采样的高超声速飞行器气动热全局快速预示[J]. 航空学报, 2023 , 44(6) : 127391 -127391 . DOI: 10.7527/S1000-6893.2022.27391
High-fidelity aerothermodynamics analysis models in the thermal protection system of the hypersonic vehicles significantly increase the computational budget of engineering design, drawing extensive attention on data-driven based rapid prediction methods. This paper proposes a batch adaptive sampling method based on fuzzy clustering to improve the global prediction accuracy with the limited computational budget of high fidelity models. The sampling influence domain is constructed by clustering and hypersphere segmentation with the distribution characteristics of the prediction error, considering both the key sampling domain with larger errors and global exploration. The sampling refused domain is developed by the local error scoring coefficient weighted to reduce the redundancy of newly added samples. The method adds new samples in the comprehensively determined key sampling space to improve the sampling quality based on the maxmin criterion, thereby rapidly improving the global accuracy of the prediction models. The comparison results show that the proposed method outperforms One-Shot, APSFC and CV-Voronoi in terms of reducing the sampling scale required and accelerating prediction accuracy improvement. The rapid prediction results of the HTV-2 typed vehicle aerothermodynamics demonstrate the practicality and effectiveness of the proposed method in engineering practices.
1 | 黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报, 2010, 31(5): 1259-1265. |
HUANG W, LUO S B, WANG Z G. Key techniques and prospect of near-space hypersonic vehicle[J]. Journal of Astronautics, 2010, 31(5): 1259-1265 (in Chinese). | |
2 | 彭治雨, 石义雷, 龚红明, 等. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1): 325-345. |
PENG Z Y, SHI Y L, GONG H M, et al. Hypersonic aeroheating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 325-345 (in Chinese). | |
3 | 喻成璋, 刘卫华. 高超声速飞行器气动热预测技术研究进展[J]. 航空科学技术, 2021, 32(2): 14-21. |
YU C Z, LIU W H. Research status of aeroheating prediction technology for hypersionic aircraft[J]. Aeronautical Science & Technology, 2021, 32(2): 14-21 (in Chinese). | |
4 | 杨恺, 高效伟. 高超声速气动热环境工程算法[J]. 导弹与航天运载技术, 2010(4): 19-23. |
YANG K, GAO X W. Engineering algorithm for aeroheating environment of hypersonic aircrafts[J]. Missiles and Space Vehicles, 2010(4): 19-23 (in Chinese). | |
5 | DOWELL E H. Eigenmode analysis in unsteady aerodynamics-reduced-order models[J]. AIAA Journal, 1996, 34(8): 1578-1583. |
6 | YONDO R, ANDRéS E, VALERO E. A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses[J]. Progress in Aerospace Sciences, 2018, 96: 23-61. |
7 | 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1): 522480. |
CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522480 (in Chinese). | |
8 | YAN X X, HAN J L, ZHANG B, et al. Model reduction of aerothermodynamic for hypersonic aerothermoelasticity based on POD and Chebyshev method[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(10): 3734-3748. |
9 | 张智超, 高太元, 张磊, 等. 基于径向基神经网络的气动热预测代理模型[J]. 航空学报, 2021, 42(4): 524167. |
ZHANG Z C, GAO T Y, ZHANG L, et al. Aeroheating agent model based on radial basis function neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524167 (in Chinese). | |
10 | GARUD S S, KARIMI I A, KRAFT M. Design of computer experiments: A review[J]. Computers & Chemical Engineering, 2017, 106: 71-95. |
11 | FORRESTER A I J, SOBESTER A, KEANE A J. Engineering design via surrogate modelling: A practical guide[M]. New York: John Wiley & Sons, 2008: 13-29. |
12 | CROMBECQ K, GORISSEN D, DESCHRIJVER D, et al. A novel hybrid sequential design strategy for global surrogate modeling of computer experiments[J]. SIAM Journal on Scientific Computing, 2011, 33(4): 1948-1974. |
13 | LIU H T, ONG Y S, CAI J F. A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design[J]. Structural and Multidisciplinary Optimization, 2018, 57(1): 393-416. |
14 | FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1-3): 50-79. |
15 | 李春娜, 张阳康. 一种适用于气动优化的高效自适应全局优化方法[J]. 航空学报, 2020, 41(5): 623352. |
LI C N, ZHANG Y K. An efficient adaptive global optimization method suitable for aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623352 (in Chinese). | |
16 | 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5): 623344. |
HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623344 (in Chinese). | |
17 | SIMPSON T W, MAUERY T M, KORTE J J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal, 2001, 39(12): 2233-2241. |
18 | LIU H T, XU S L, MA Y, et al. An adaptive Bayesian sequential sampling approach for global metamodeling[J]. Journal of Mechanical Design, 2016, 138(1): 011404. |
19 | XIONG Y, CHEN W, APLEY D, et al. A non-stationary covariance-based Kriging method for metamodelling in engineering design[J]. International Journal for Numerical Methods in Engineering, 2007, 71(6): 733-756. |
20 | YAO W, CHEN X Q, LUO W C. A gradient-based sequential radial basis function neural network modeling method[J]. Neural Computing and Applications, 2009, 18(5): 477-484. |
21 | FARHANG-MEHR A, AZARM S. Bayesian meta-modelling of engineering design simulations: A sequential approach with adaptation to irregularities in the response behaviour[J]. International Journal for Numerical Methods in Engineering, 2005, 62(15): 2104-2126. |
22 | TURNER C J, CRAWFORD R H, CAMPBELL M I. Multidimensional sequential sampling for NURBs-based metamodel development[J]. Engineering With Computers, 2007, 23(3): 155-174. |
23 | LI G Z, AUTE V, AZARM S. An accumulative error based adaptive design of experiments for offline metamodeling[J]. Structural and Multidisciplinary Optimization, 2010, 40(1): 137-155. |
24 | AUTE V, SALEH K, ABDELAZIZ O, et al. Cross-validation based single response adaptive design of experiments for Kriging metamodeling of deterministic computer simulations[J]. Structural and Multidisciplinary Optimization, 2013, 48(3): 581-605. |
25 | CHEN X, LIU L, ZHOU S, et al. Adding-point strategy for reduced-order hypersonic aerothermodynamics modeling based on fuzzy clustering[J]. Chinese Journal of Mechanical Engineering, 2016, 29(5): 983-991. |
26 | XU S L, LIU H T, WANG X F, et al. A robust error-pursuing sequential sampling approach for global metamodeling based on voronoi diagram and cross validation[J]. Journal of Mechanical Design, 2014, 136(7): 69-74. |
27 | KAMINSKY A L, WANG Y, PANT K, et al. Adaptive sampling techniques for surrogate modeling to create high-dimension aerodynamic loading response surfaces[C]∥ 2018 Applied Aerodynamics Conference. Reston: AIAA, 2018. |
28 | JOHNSON M E, MOORE L M, YLVISAKER D. Minimax and maximin distance designs[J]. Journal of Statistical Planning and Inference, 1990, 26(2): 131-148. |
29 | BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Springer Science & Business Media, 2013: 1-7. |
30 | ROUSSEEUW P J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20: 53-65. |
31 | OLIVER M A. A tutorial guide to geostatistics: Computing and modelling variograms and Kriging[J]. CATENA, 2014, 113: 56-69. |
32 | 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. |
HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225 (in Chinese). | |
33 | 甄华萍, 蒋崇文. 高超声速技术验证飞行器HTV-2综述[J]. 飞航导弹, 2013(6): 7-13. |
ZHEN H P, JIANG C W. Overview of hypersonic technology verification vehicle HTV-2[J]. Aerodynamic Missile Journal, 2013(6): 7-13 (in Chinese). | |
34 | SHI J T, ZHANG L, JIANG B S, et al. Aerodynamic force and heating optimization of HTV-2 typed vehicle[C]∥ 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017. |
/
〈 |
|
〉 |