电子电气工程与控制

基于故障注入模型的电传飞控系统安全性分析

  • 荘露 ,
  • 陆中 ,
  • 宋海靖 ,
  • 董力 ,
  • 吴雨婷 ,
  • 周伽
展开
  • 1.南京航空航天大学 民航学院,南京  211106
    2.中国飞行试验研究院 可靠性研究中心,西安  710089
    3.中国航空无线电电子研究所 民机系统部,上海  200241
    4.东方航空江苏有限公司 飞机维修部,南京  211106
.E-mail: luzhong@nuaa.edu.cn

收稿日期: 2022-04-26

  修回日期: 2022-06-15

  录用日期: 2022-09-23

  网络出版日期: 2022-09-30

基金资助

国家自然科学基金(U1733124);民航安全能力建设基金(2021-196);航空科学基金(20180252002);南京航空航天大学科研与实践创新计划(xcxjh20210702)

Safety analysis for fly⁃by⁃wire system based on fault injection model

  • Lu ZHUANG ,
  • Zhong LU ,
  • Haijing SONG ,
  • Li DONG ,
  • Yuting WU ,
  • Jia ZHOU
Expand
  • 1.College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing  211106,China
    2.Reliability Research Center,Chinese Flight Test Establishment,Xi’an  710089,China
    3.Civil Aviation System Department,Chinese Aeronautical Radio Electronics Research Institute,Shanghai  200241,China
    4.Aircraft Maintenance Department,China Eastern Airlines Jiangsu Limited,Nanjing  211106,China

Received date: 2022-04-26

  Revised date: 2022-06-15

  Accepted date: 2022-09-23

  Online published: 2022-09-30

Supported by

National Natural Science Foundation of China(U1733124);Funds for Civil Aviation Safety Capacity Building(2021-196);Aeronautical Science Foundation of China(20180252002);Research and Practical Innovation Program of Nanjing University of Aeronautics and Astronautics(xcxjh20210702)

摘要

安全性分析既是飞机研制中提高安全性的主要手段,也是审定中验证设计方案是否满足适航要求的重要符合性方法。传统的安全性分析方法滞后于系统的设计过程,且高度依赖于分析人员的技术和经验,无法满足现代飞机复杂系统研制的需求。针对电传飞控系统提出了一种基于模型的安全性分析方法。使用Simulink分别构建了典型电传飞控系统的名义模型和拓展模型,利用单故障注入后的系统响应提出了故障影响的分析方法,以支持故障模式及影响分析的开展,基于状态遍历实现了组合故障注入,并利用组合故障注入后的系统响应提出故障树最小割集的分析方法,最后结合工程案例说明了本文方法的正确性与有效性。与经典的马尔可夫分析方法相比,该方法避免了对设计人员经验的依赖并且具有更高的精度;当系统方案修改时,该方法能直接更新安全性分析结果,避免了重新建模分析的繁琐工作。

本文引用格式

荘露 , 陆中 , 宋海靖 , 董力 , 吴雨婷 , 周伽 . 基于故障注入模型的电传飞控系统安全性分析[J]. 航空学报, 2023 , 44(9) : 327329 -327329 . DOI: 10.7527/S1000-6893.2022.27329

Abstract

Safety analysis is the main method to improve safety in the process of aircraft development, and is also an important method to examine if the design meets the safety requirements of airworthiness standards. Traditional safety analysis methods lag behind the system design process and are significantly dependent on the skills and experience of analysts, and thus cannot meet the requirements of safety analysis for modern complex systems gradually. This paper presents a model-based safety analysis method for the fly-by-wire system. The nominal model and extended model of the fly-by-wire flight control system are established with Simulink. Failure mode and effect analysis can be conducted by injecting the single fault mode and evaluating the impact through the system response. An analysis method of obtaining the minimal cut sets is proposed based on the system response by traversing all failure combinations. Finally, the correctness and effectiveness of the proposed method are illustrated by an engineering case. Compared with the classical Markov method, our method can avoid dependence on designers’ experience, and has higher accuracy. In addition, with the change of design, our method can update the results of safety analysis automatically, which can avoid the tedious work of re-modeling and re-analysis.

参考文献

1 中国民用航空局. 运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民用航空局, 2011: 129-130.
  Civil Aviation Administration of China. Airworthiness standards for transport aircraft: CCAR-25-R4 [S]. Beijing:Civil Aviation Administration of China, 2011: 129-130 (in Chinese).
2 Society of Automotive Engineers International. Certification considerations for highly-integrated or complex aircraft systems: ARP4754A [S]. Warrendale: Society of Automotive Engineers, 2010: 1-12.
3 Society of Automotive Engineers International. Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment: ARP4761 [S]. Warrendale: Society of Automotive Engineers, 1996: 4-6.
4 胡晓义, 王如平, 王鑫, 等. 基于模型的复杂系统安全性和可靠性分析技术发展综述[J]. 航空学报202041(6): 523436.
  HU X Y, WANG R P, WANG X, et al. Recent development of safety and reliability analysis technology for model-based complex system[J]. Acta Aeronautica et Astronautica Sinica202041(6): 523436 (in Chinese).
5 陈磊, 焦健, 赵廷弟. 基于模型的复杂系统安全分析综述[J]. 系统工程与电子技术201739(6): 1287-1291.
  CHEN L, JIAO J, ZHAO T D. Review for model-based safety analysis of complex safety-critical system[J]. Systems Engineering and Electronics201739(6): 1287-1291 (in Chinese).
6 LIU J T, WANG H W, ZHENG W. A safety modelling method for high-speed train control systems based on UML extension[C]∥2020 Chinese Automation Congress. Piscataway: IEEE Press, 2020: 317-321.
7 WANG H L, ZHONG D M, ZHAO T D, et al. Integrating model checking with SysML in complex system safety analysis[J]. IEEE Access20197: 16561-16571.
8 STEWART D. AADL-Based safety analysis using formal methods applied to aircraft digital systems[J]. Reliability Engineering & System Safety2021213: 107649.
9 WEI X M. AADL-based safety analysis approaches for safety-critical systems[C]∥2019 12th IEEE Conference on Software Testing, Validation and Verification. Piscataway: IEEE Press, 2019: 481-482.
10 ZHANG F K, DONG H Y. Research on formal modeling and safety analysis method of head-up display system for civil aircraft based on AltaRica[C]∥2019 3rd International Conference on Circuits, System and Simulation. Piscataway: IEEE Press, 2019: 116-120.
11 LI Z, JIANG Z Q, WANG D S, et al. System modeling and fault tree analysis based on AltaRica[J]. IEEE Access8: 168879-168897.
12 LU Z, ZHANG Z W, ZHUANG L, et al. Reliability model of the fly-by-wire system based on stochastic Petri net[J]. International Journal of Aerospace Engineering20192019: 2124836.
13 WU D H. Formal model-based quantitative safety analysis using timed coloured Petri nets[J]. Reliability Engineering & System Safety2018176: 62-79.
14 SINGH L K, RAJPUT H. Dependability analysis of safety critical real-time systems by using Petri nets[J]. IEEE Transactions on Control Systems Technology201826(2): 415-426.
15 SAVELEV A S, EROSHCHENKOV E V, NERETIN E S, et al. Finite-state machine method in the safety assessment process using Stateflow diagrams[J]. Journal of Physics: Conference Series20211958(1): 012034.
16 CARRILLO M, ESTIVILL-CASTRO V, ROSENBLUETH D. Model-to-model transformations for efficient time-domain verification of concurrent models by NuSMV modules[C]∥ Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development. Science and Technology Publications, 2020: 287-298.
17 ZHONG D M, SUN R, GONG H Y, et al. System-theoretic process analysis based on SysML/MARTE and NuSMV[J]. Applied Sciences202212(3): 1671.
18 DOMíNGUEZ-GARCíA A D. An integrated methodology for the dynamic performance and reliability evaluation of fault-tolerant systems[J]. Reliability Engineering & System Safety200893(11): 1628-1649.
19 SHAO N, ZHANG S G, LIANG H. Model-based safety analysis of a control system using Simulink and Simscape extended models[C]∥ 2017 3rd International Conference on Mechanical, Electronic and Information Technology Engineering. Les Ulis: EDP Sciences, 2017139: 00219.
20 KIRAN R, JEPPU Y. Autopilot mode transitions and voter logic validation using model checking: A design study of formal methods[M]∥Lecture Notes in Electrical Engineering. Berlin: Springer, 2021: 263-281.
21 PING M L, ZHANG X B, GAO Z H, et al. Simulation model development of three-stage synchronous generator for aircraft power systems based on modelica[C]∥2016 19th International Conference on Electrical Machines and Systems. Piscataway: IEEE Press, 2016: 1-6.
22 MCRUER D T, MYERS T T, THOMPSON P M. Literal singular-value-based flight control system design techniques[J]. Journal of Guidance, Control, and Dynamics198912(6): 913-919.
23 DOMINGUEZ-GARCIA A D. An integrated methodology for the performance and reliability evaluation of fault-tolerant systems[D]. Cambridge: Massachusetts Institute of Technology, 2007: 103-122.
24 DOMINGUEZ-GARCIA A D, KASSAKIAN J G, SCHINDALL J E, et al. On the use of behavioral models for the integrated performance and reliability evaluation of fault-tolerant avionics systems[C]∥2006 IEEE/AIAA 25th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2006: 1-14.
25 LU Z, ZHUANG L, DONG L, et al. Model-based safety analysis for the fly-by-wire system by using Monte Carlo simulation[J]. Processes20208(1): 90.
26 BABCOCK P S, ROSCH G, ZINCHUK J J. An automated environment for optimizing fault-tolerant systems designs[C]∥Annual Reliability and Maintainability Symposium. Piscataway: IEEE Press, 1991: 360-367.
27 董力. 基于模型的飞行控制系统安全性分析方法研究[D]. 南京: 南京航空航天大学, 2020: 51-53.
  DONG L. Research on model-based safety analysis of flight control system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 51-53 (in Chinese).
文章导航

/