高强铝合金CMT+P电弧增材制造熔滴过渡行为
收稿日期: 2022-08-01
修回日期: 2022-08-26
录用日期: 2022-09-08
网络出版日期: 2022-09-22
基金资助
天津市教委教研计划(2020KJ020);航空科学基金(2020Z049067002)
Droplet transfer behavior of high strength aluminum alloy CMT+P arc additive manufacturing
Received date: 2022-08-01
Revised date: 2022-08-26
Accepted date: 2022-09-08
Online published: 2022-09-22
Supported by
Scientific Research Project of Tianjin Education Commission(2020KJ020);Aeronautical Science Foundation of China(2020Z049067002)
新型冷金属过渡与脉冲(CMT+P)复合电弧技术实现了对电弧能量的精细控制,为获得高质量电弧增材成形件提供了可靠保证;然而CMT与脉冲协同作用过程中的熔滴过渡行为尚不清晰,其对增材过程稳定性、成形质量有重要影响。以高强铝合金为研究对象,基于流体力学和电磁学理论,采用动网格与界面追踪技术,综合运用数值模拟和原位观测试验手段研究了高强铝合金CMT+P电弧增材过程中的熔滴过渡行为。结果表明模拟结果与试验结果高度吻合;平均送丝速度为5 m/s时高强铝合金CMT+P电弧增材工艺的熔滴过渡呈现CMT阶段的短路过渡和脉冲阶段的一脉一滴射滴过渡的混合过渡模式;在短路阶段由熔丝机械拉力形成的金属液桥可有效避免熔滴飞溅,提高成形质量;在脉冲阶段熔滴受电磁力、表面张力、Marangoni力、重力和等离子流力耦合作用,在内部形成静止区,速度在静止区收敛或发散,呈流速上下反向的特点,进而影响熔滴过渡的稳定性。
张志强 , 勾青泽 , 路学成 , 王浩 , 曹轶然 , 郭志永 . 高强铝合金CMT+P电弧增材制造熔滴过渡行为[J]. 航空学报, 2023 , 44(13) : 427881 -427881 . DOI: 10.7527/S1000-6893.2022.27881
The new technology of Cold Metal Transfer and Pulse (CMT+P) composite arc realizes the fine control of arc energy, and provides a reliable guarantee for obtaining high-quality arc additive formed parts. However, the droplet transfer behavior in the synergistic action of CMT and pulse is not clear, which impacts heavily on the stability of additive process and forming quality. Based on the theory of hydrodynamics and electromagnetism, this paper takes high-strength aluminum alloy as the research object, adopts dynamic grid technology and interface tracking technology, and comprehensively uses numerical simulation and in-situ observation test methods to clarify the evolution mechanism of droplet transfer behavior in the process of CMT+P arc additive of high-strength aluminum alloy. The results show that the simulation results are highly consistent with the experimental results. When the average wire feeding speed is 5 m/s, the droplet transfer of high-strength aluminum alloy CMT+P arc additive process presents a mixed transition mode of short-circuit transition in CMT stage and one pulse one drop ejection transition in pulse stage. The metal liquid bridge formed by the mechanical tension of the fuse in the short circuit stage can effectively avoid the splashing of molten droplets and improve the forming quality. In the pulse stage, the droplet is coupled by electromagnetic force, surface tension, Marangoni force, gravity and plasma flow force to form a static area. The velocity converges or diverges in the static area, forming the characteristics of upward and downward reverse flow velocity, which further affects the stability of droplet transition.
1 | 赵海洋, 高多龙, 张童, 等. 电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628. |
ZHAO H Y, GAO D L, ZHANG T, et al. Microstructure and corrosion evolution of aerospace AA2024 Al-alloy thin wall structure produced through WAAM[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(4): 621-628 (in Chinese). | |
2 | 姚云飞, 王缪乾, 方学伟, 等. 冷金属过渡(CMT)增材制造2219铝合金性能[J]. 焊接, 2019(6): 53-60, 68. |
YAO Y F, WANG M Q, FANG X W, et al. Properties of 2219 aluminum alloy additive manufactured by Cold Metal Transfer welding process[J]. Welding & Joining, 2019(6): 53-60, 68 (in Chinese). | |
3 | YAKOUT M, ELBESTAWI M A, VELDHUIS S C. A review of metal additive manufacturing technologies[J]. Solid State Phenomena, 2018, 278: 1-14. |
4 | 张兆栋, 何胜斌, 王奇鹏, 等. 电弧增材制造工艺方法、增材焊料及后处理的研究现状[J]. 电焊机, 2021, 51(8): 1-10, 176. |
ZHANG Z D, HE S B, WANG Q P, et al. Research status of process method, additive solder and post-processing in arc additive manufacturing[J]. Electric Welding Machine, 2021, 51(8): 1-10, 176 (in Chinese). | |
5 | 田根, 王文宇, 常青, 等. 电弧增材制造技术研究现状及展望[J]. 材料导报, 2021, 35(23): 23131-23141. |
TIAN G, WANG W Y, CHANG Q, et al. Research progress and prospect of wire and arc additive manufacture[J]. Materials Reports, 2021, 35(23): 23131-23141 (in Chinese). | |
6 | PANG J, HU S S, SHEN J Q, et al. Arc characteristics and metal transfer behavior CMT+P welding process[J]. Journal of Materials Processing Technology, 2016, 238: 212-217. |
7 | SUN Q J, LI J Z, LIU Y B, et al. Arc characteristics and droplet transfer process in CMT welding with a magnetic field[J]. Journal of Manufacturing Processes, 2018, 32: 48-56. |
8 | AYARKWA K F, WILLIAMS S, DING J. Investigation of pulse advance cold metal transfer on aluminium wire arc additive manufacturing[J]. International Journal of Rapid Manufacturing, 2015, 5(1): 44. |
9 | CADIOU S, COURTOIS M, CARIN M, et al. 3D heat transfer, fluid flow and electromagnetic model for cold metal transfer wire arc additive manufacturing (Cmt-Waam)[J]. Additive Manufacturing, 2020, 36: 101541. |
10 | ZONG R, CHEN J, WU C S. A comparison of double shielded GMAW-P with conventional GMAW-P in the arc, droplet and bead formation[J]. Journal of Materials Processing Technology, 2020, 285: 116781. |
11 | IKRAM A, CHUNG H. Numerical simulation of arc, metal transfer and its impingement on weld pool in variable polarity gas metal arc welding[J]. Journal of Manufacturing Processes, 2021, 64: 1529-1543. |
12 | OGINO Y, HIRATA Y, ASAI S. Numerical simulation of metal transfer in pulsed-MIG welding[J]. Welding in the World, 2017, 61(6): 1289-1296. |
13 | ZHAO Y Y, CHUNG H. Influence of power source dynamics on metal and heat transfer behaviors in pulsed gas metal arc welding[J]. International Journal of Heat and Mass Transfer, 2018, 121: 887-899. |
14 | 丁雪萍, 李桓. GMAW熔滴过渡行为数值分析及试验验证[J]. 焊接学报, 2017, 38(12): 73-76, 113, 132. |
DING X P, LI H. Numerical simulation and experimental verification of droplet transfer behavior in GMAW[J]. Transactions of the China Welding Institution, 2017, 38(12): 73-76, 113, 132 (in Chinese). | |
15 | FENG J C, ZHANG H T, HE P. The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding[J]. Materials & Design, 2009, 30(5): 1850-1852. |
16 | LIU C C, HE J S. Numerical analysis of thermal fluid transport behavior during electron beam welding of 2219 aluminum alloy plate[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(6): 1319-1326. |
17 | XIAO L, FAN D, HUANG J K, et al. 3D numerical study of external axial magnetic field-controlled high-current GMAW metal transfer behavior[J]. Materials (Basel, Switzerland), 2020, 13(24): 5792. |
18 | 王健, 王绍青. 铝合金表面电偶腐蚀与电子功函数的关系[J]. 物理化学学报, 2014, 30(3): 551-558. |
WANG J, WANG S Q. Correlation between galvanic corrosion and electronic work function of Al alloy surfaces[J]. Acta Physico-Chimica Sinica, 2014, 30(3): 551-558 (in Chinese). | |
19 | BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. |
20 | 陈茂爱, 武传松, 廉荣. GMAW焊接熔滴过渡动态过程的数值分析[J]. 金属学报, 2004, 40(11): 1227-1232. |
CHEN M A, WU C S, LIAN R. Numerical analysis of dynamic process of metal transfer in GMAW[J]. Acta Metallurgica Sinica, 2004, 40(11): 1227-1232 (in Chinese). | |
21 | HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. |
22 | VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. |
23 | CADIOU S, COURTOIS M, CARIN M, et al. Heat transfer, fluid flow and electromagnetic model of droplets generation and melt pool behaviour for wire arc additive manufacturing[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119102. |
24 | 赵文勇, 曹熙勇, 杜心伟, 等. CMT电弧增材制造过程传热传质数值模拟[J]. 机械工程学报, 2022, 58(1): 267-276. |
ZHAO W Y, CAO X Y, DU X W, et al. Numerical simulation of heat and mass transfer in CMT-based additive manufacturing[J]. Journal of Mechanical Engineering, 2022, 58(1): 267-276 (in Chinese). | |
25 | CHEN G Q, LIU J P, SHU X, et al. Numerical simulation of keyhole morphology and molten pool flow behavior in aluminum alloy electron-beam welding[J]. International Journal of Heat and Mass Transfer, 2019, 138: 879-888. |
26 | MURPHY A B. The effects of metal vapour in arc welding[J]. Journal of Physics D: Applied Physics, 2010, 43(43): 434001. |
27 | MILLS K C. Cu-Al (Al bronze)[M]∥ Recommended Values of Thermophysical Properties for Selected Commercial Alloys. Amsterdam: Elsevier, 2002: 98-104. |
/
〈 |
|
〉 |