基于双参数表征的航空发动机轮盘模型辅助涡流检测可靠性
收稿日期: 2022-07-28
修回日期: 2022-08-26
录用日期: 2022-09-15
网络出版日期: 2022-09-22
基金资助
国家自然科学基金(51865033);工信部专项科研项目;博士启动基金(EA202208183)
Reliability of aero-engine wheel model assisted eddy current testing based on two-parameter representation
Received date: 2022-07-28
Revised date: 2022-08-26
Accepted date: 2022-09-15
Online published: 2022-09-22
Supported by
National Natural Science Foundation of China(51865033);Special Scientific Research Program from the Ministry of Industry and Information Technology of China;PhD Start-up Foundation(EA202208183)
在航空发动机轮盘损伤容限设计中使用了无损检测可靠性(POD)的关键性指标
宋凯 , 张弛 , 晏晨辉 , 宁宁 , 樊俊铃 , 王荣彪 . 基于双参数表征的航空发动机轮盘模型辅助涡流检测可靠性[J]. 航空学报, 2023 , 44(13) : 227866 -227866 . DOI: 10.7527/S1000-6893.2022.27866
The key index
1 | 江荣,吴常皓,万煜伟,等.涡轮盘合金氧化-疲劳裂纹扩展机理和寿命预测研究进展[J].机械工程学报,2021,57(16):122-131. |
JIANG R, WU C H, WAN Y W, et al. Progress on oxidation-fatigue crack propagation mechanisms and life prediction in turbine disc alloys[J]. Journal of Mechanical Engineering, 2021, 57(16): 122-131 (in Chinese). | |
2 | 郑小梅, 孙燕涛, 杨兴宇, 等.某涡扇发动机高压涡轮盘螺栓孔低循环疲劳模拟件设计[J]. 航空动力学报, 2018, 33(10): 2351-2358. |
ZHENG X M, SUN Y T, YANG X Y, et al. Design of low cycle fatigue simulating specimen for bolt holes of a turbofan engine high pressure turbine disc[J]. Journal of Aerospace Power, 2018, 33(10): 2351-2358 (in Chinese). | |
3 | 丁水汀, 潘博超, 李果, 等.寿命限制件概率失效风险评估材料缺陷数据模型[J]. 航空动力学报, 2018, 33(5): 1270-1280. |
DING S T, PAN B C, LI G, et al. Material defects data model of probabilistic risk assessment on life limited prat[J]. Journal of Aerospace Power, 2018, 33(5): 1270-1280 (in Chinese). | |
4 | 段发阶, 牛广越, 周琦, 等. 航空发动机叶尖间隙在线测量技术研究综述[J]. 航空学报, 2022, 43(9): 626014. |
DUAN F J, NIU G Y, ZHOU Q, et al. A review of online blade tip clearance measurement technologies for aeroengines[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 626014 (in Chinese). | |
5 | 陆山, 李波. 考虑表面加工缺陷的轮盘疲劳寿命分析方法[J]. 航空发动机, 2014, 40(5): 7-12. |
LU S, LI B. An analysis method of disk fatigue life considering surface manufacturing-induced anomaly[J]. Aeroengine, 2014, 40(5): 7-12 (in Chinese). | |
6 | 丁水汀, 周惠敏, 刘俊博, 等. 航空发动机限寿件表面特征概率损伤容限评估[J]. 航空动力学报, 2021, 36(2): 421-430. |
DING S T, ZHOU H M, LIU J B, et al. Probabilistic damage tolerance assessment of surface features of aero engine life limited parts[J]. Journal of Aerospace Power, 2021, 36(2): 421-430 (in Chinese). | |
7 | 刘秀丽, 黄华斌. 涡流法对不同厚度隔层下裂纹检出概率的测试研究[J]. 航空学报, 1998, 19(4): 106-109. |
LIU X L, HUANG H B. Study on crack inspection probability by using eddy current under different thickness cover layers[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(4): 106-109 (in Chinese). | |
8 | 王静. 奥氏体不锈钢上缺陷的涡流无损检测可靠性研究[D]. 青岛: 青岛科技大学, 2021. |
WANG J. Reliability of eddy current nondestructive testing for defects on austenitic stainless steel[D]. Qingdao: Qingdao University of Science & Technology, 2021 (in Chinese). | |
9 | 李莹莹. 相控阵超声检测可靠性与POD数值模拟初探[D]. 大连: 大连理工大学, 2014. |
LI Y Y. Initial exploration on the reliability of phased array ultrasonic testing and numerical simulation of POD[D]. Dalian: Dalian University of Technology, 2014 (in Chinese). | |
10 | 陈光. 涡轮盘中隐藏多年的瑕疵导致波音767烧毁[J]. 航空动力, 2019(6): 56-58. |
CHEN G. A hidden defect in the turbine disk result in a boeing 767 burned[J]. Aerospace Power, 2019(6): 56-58 (in Chinese). | |
11 | RENTALA V K, MYLAVARAPU P, GAUTAM J P. Issues in estimating probability of detection of NDT techniques–A model assisted approach[J]. Ultrasonics, 2018, 87: 59-70. |
12 | 张国才, 谢小荣, 刘永钊, 等. 叶片前缘仿形涡流检测仿真与试验设计[J]. 航空学报, 2021, 42(2): 398-409. |
ZHANG G C, XIE X R, LIU Y Z, et al. Simulation and experimental design of profiling eddy current detection of blade leading edge[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 398-409 (in Chinese). | |
13 | 张海兵, 王世涛, 单柏荣. 基于CIVA的覆有涂层叶片涡流检测仿真与POD分析[J]. 航空制造技术, 2021, 64(12): 90-93, 101. |
ZHANG H B, WANG S T, SHAN B R. Simulation and POD analysis of eddy current detection of coated blade based on CIVA[J]. Aeronautical Manufacturing Technology, 2021, 64(12): 90-93, 101 (in Chinese). | |
14 | 倪晨. 退役发动机曲轴缺陷涡流/磁记忆检测与寿命预测研究[D]. 武汉: 武汉理工大学, 2019. |
NI C. Research on eddy current/magnetic memory testing and life prediction for retired engine crankshaft[D]. Wuhan: Wuhan University of Technology, 2019 (in Chinese). | |
15 | 王炜强, 贾晓洪, 杨东升, 等. 制导武器效能评估试验设计方法综述与应用探讨[J]. 航空兵器, 2015, 22(6): 46-48, 54. |
WANG W Q, JIA X H, YANG D S, et al. An overview and application of DOE for guided weapon performance evaluation[J]. Aero Weaponry, 2015, 22(6): 46-48, 54 (in Chinese). | |
16 | 王静, 凌元锦. 奥氏体不锈钢上缺陷涡流探头POD新模型[J]. 青岛科技大学学报(自然科学版), 2021, 42(6): 96-100. |
WANG J, LING Y J. Novel POD model of eddy current probes for inspecting pits on austenitic stainless steel[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2021, 42(6): 96-100 (in Chinese). | |
17 | BATO M R, HOR A, RAUTUREAU A, et al. Experimental and numerical methodology to obtain the probability of detection in eddy current NDT method[J]. NDT & E International, 2020, 114: 102300. |
18 | LE G L, IOOSS B, BLATMAN G, et al. Model assisted probability of detection curves: New statistical tools and progressive methodology[J]. Journal of Nondestructive Evaluation, 2017, 36(1):1-12. |
19 | PARK I K, KIM H M. Model for predicting ultrasonic NDE reliability and statistical data analysis of piping inspection round robin[J]. International Journal of Reliability and Applications, 2004, 5(1): 25-36. |
20 | CARBONI M, CANTINI S. Advanced ultrasonic “Probability of Detection” curves for designing in-service inspection intervals[J]. International Journal of Fatigue, 2016, 86: 77-87. |
21 | UNDERHILL P R, KRAUSE T W. Quantitative fractography for improved probability of detection (POD) analysis of bolt hole eddy current[J]. Research in Nondestructive Evaluation, 2011, 22(2): 92-104. |
22 | YUSA N, TOMIZAWA T, SONG H C, et al. Probability of detection analyses of eddy current data for the detection of corrosion[J]. Badania Nieniszcz?ce i Diagnostyka, 2018, 4: 3-7. |
23 | PAVLOVI? M, TAKAHASHI K, MüLLER C. Probability of detection as a function of multiple influencing parameters[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2012, 54(11): 606-611. |
24 | MOSKOVCHENKO A, ?VANTNER M, VAVILOV V, et al. Analyzing probability of detection as a function of defect size and depth in pulsed IR thermography[J]. NDT & E International, 2022, 130: 102673. |
25 | KEPRATE A, RATNAYAKE R M C. Probability of detection as a metric for quantifying NDE capability: The state of the art[J]. The Journal of Pipeline Engineering, 2015, 14(3): 199-209. |
26 | 中国国际航空公司工程技术分公司成都维修基地,北京飞机维修工程有限公司,厦门航空公司. 航空器无损检测涡流检验: [S]. 北京: 中国科学技术出版社, 2006. |
Air China Engineering Technology Branch Chengdu Maintenance Base, Beijing Aircraft Maintenance Engineering Co., Ltd., Airlines Xiamen. Eddy current testing for aircraft non-destructive testing: [S]. Beijing: China Science and Technology Press, 2006 (in Chinese). | |
27 | 福建省电力试验研究院,华东电力试验研究院. 汽轮机叶片涡流检验技术导则: [S]. 北京: 中国电力出版社, 2005. |
Fujian Electric Power Test Research Institute, East China Electric Power Test Research Institute. Technical guidelines for eddy current inspection of steam turbine blades: [S]. Beijing: China Electric Power Press, 2005 (in Chinese). |
/
〈 |
|
〉 |