电子电气工程与控制

基于新型权重解析法的永磁电机预测转矩控制

  • 颜黎明 ,
  • 郭鑫 ,
  • 赵冬冬
展开
  • 1. 长安大学 汽车学院, 西安 710064;
    2. 西北工业大学 自动化学院, 西安 710072

收稿日期: 2022-07-11

  修回日期: 2022-08-04

  网络出版日期: 2022-09-22

基金资助

国家自然科学基金(52107036);中国博士后科学基金(2022T150071)

Model predictive torque control of permanent magnet synchronous motor using novel analytic weighting factor assignment

  • YAN Liming ,
  • GUO Xin ,
  • ZHAO Dongdong
Expand
  • 1. School of Automobile, Chang'an University, Xi'an 710064, China;
    2. School of Automation, Northwest Polytechnic University, Xi'an 710072, China

Received date: 2022-07-11

  Revised date: 2022-08-04

  Online published: 2022-09-22

Supported by

National Natural Science Foundation of China (52107036);China Postdoctoral Science Foundation (2022T150071)

摘要

在永磁同步电机有限集预测转矩控制中,多控制目标的最优协同调控依赖于权重因子的配置。由于目前缺乏理论指导,权重因子的设计通常采用额定值法或试凑法,无法实现多工况下永磁同步电机电磁转矩和定子磁链幅值的协同控制。针对此问题,提出了基于新型解析权重因子配置的永磁同步电机模型预测转矩控制。基于仿真法研究了代价函数中权重因子对电驱系统控制性能的影响规律,详细阐述了解析权重因子的推导过程及其数学表达式。考虑到解析权重及预测模型均依赖于电机参数,本文方法融合了在线电机参数辨识技术。与传统预测转矩控制相比,本文方法具有更好的动态、稳态及鲁棒性能。

本文引用格式

颜黎明 , 郭鑫 , 赵冬冬 . 基于新型权重解析法的永磁电机预测转矩控制[J]. 航空学报, 2022 , 43(12) : 327785 -327785 . DOI: 10.7527/S1000-6893.2022.27785

Abstract

In finite control set-predictive torque control of Permanent Magnet Synchronous Motor (PMSM), the optimal coordinated regulation of multiple control objectives depends on the allocation of weighting factors. Due to the lack of theoretical guidance, the design of weighting factor usually adopts the rated value method or cut-and-trial method, which cannot realize the coordinated control of electromagnetic torque and stator flux amplitude of PMSM under multiple operating conditions. To solve this problem, a model predictive torque control of PMSM with novel analytical weighting factor configuration is proposed in this paper. Firstly, the influence of weighting factor in the cost function on the control performances of electric drive system is studied by the simulation method. Secondly, the derivation process and mathematical expression of analytical weighting factors are described. Considering that the analytical weighting factor and the prediction model depend on the motor parameters, this paper integrates the online motor parameter identification technologies. Compared with traditional predictive torque control, the proposed method has better dynamic and steady-state and robustness performances.

参考文献

[1] 崔淑梅, 匡志, 杜博超, 等. 基于自抗扰控制原理的全电飞机用永磁同步电机转速闭环控制[J]. 电工技术学报, 2017, 32(S1):107-115. CUI S M, KUANG Z, DU B C, et al. Speed closed-loop control of permanent magnet synchronous motor for all-electric aircraft applications based on active disturbance rejection controller[J]. Transactions of China Electrotechnical Society, 2017, 32(S1):107-115(in Chinese).
[2] 刘春强, 骆光照, 涂文聪. 航空机电作动永磁同步电机自抗扰控制研究综述[J]. 电气工程学报, 2021, 16(4):12-24. LIU C Q, LUO G Z, TU W C. Survey on active disturbance rejection control of permanent magnet synchronous motor for aviation electro-mechanical actuator[J]. Journal of Electrical Engineering, 2021, 16(4):12-24(in Chinese).
[3] RODRIGUEZ J, GARCIA C, MORA A, et al. Latest advances of model predictive control in electrical drives-part I:Basic concepts and advanced strategies[J]. IEEE Transactions on Power Electronics, 2022, 37(4):3927-3942.
[4] VAZQUEZ S, RODRIGUEZ J, RIVERA M, et al. Model predictive control for power converters and drives:Advances and trends[C]//IEEE Transactions on Industrial Electronics. Piscataway:IEEE Press, 2016:935-947.
[5] KOUR S, CORTES P, VARGAS R, et al. Model predictive control-a simple and powerful mothed to control power converters[J]. IEEE Transactions on Industrial Electronics, 2008:56(6):1826-1838.
[6] ANDERSSON A, THIRINGER T. Assessment of an improved finite control set model predictive current controller for automotive propulsion applications[J]. IEEE Transactions on Industrial Electronics, 2020, 67(1):91-100.
[7] GEYER T, QUEVEDO D E. Performance of multistep finite control set model predictive control for power electronics[J]. IEEE Transactions on Power Electronics, 2015, 30(3):1633-1644.
[8] WANG F X, LI S H, MEI X Z, et al. Model-based predictive direct control strategies for electrical drives:An experimental evaluation of PTC and PCC methods[J]. IEEE Transactions on Industrial Informatics, 2015, 11(3):671-681.
[9] YAN L M, WANG F X. Observer-predictor-based predictive torque control of induction machine for robustness improvement[J]. IEEE Transactions on Power Electronics, 2021, 36(8):9477-9486.
[10] YAN L M, WANG F X, TAO P, et al. Robust predictive torque control of permanent magnet synchronous machine using discrete hybrid prediction model[J]. IEEE Transactions on Energy Conversion, 2020, 35(4):2240-2248.
[11] ZHANG Y C, YANG H T. Two-vector-based model predictive torque control without weighting factors for induction motor drives[J]. IEEE Transactions on Power Electronics, 2016, 31(2):1381-1390.
[12] WANG F X, XIE H T, CHEN Q, et al. Parallel predictive torque control for induction machines without weighting factors[J]. IEEE Transactions on Power Electronics, 2020, 35(2):1779-1788.
[13] WANG F X, WANG J X, KENNEL R M, et al. Fast speed control of AC machines without the proportional-integral controller:Using an extended high-gain state observer[J]. IEEE Transactions on Power Electronics, 2019, 34(9):9006-9015.
[14] GUAZZELLI P R U, DE ANDRADE PEREIRA W C, DE OLIVEIRA C M R, et al. Weighting factors optimization of predictive torque control of induction motor by multiobjective genetic algorithm[J]. IEEE Transactions on Power Electronics, 2019, 34(7):6628-6638.
[15] BHOWATE A, AWARE M, SHARMA S. Predictive torque control with online weighting factor computation technique to improve performance of induction motor drive in low speed region[J]. IEEE Access, 2019, 7:42309-42321.
[16] MIRANDA H, CORTES P, YUZ J I, et al. Predictive torque control of induction machines based on state-space models[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6):1916-1924.
[17] RUBINO S, BOJOI R, ODHANO S A, et al. Model predictive direct flux vector control of multi-three-phase induction motor drives[J]. IEEE Transactions on Industry Applications, 2018, 54(5):4394-4404.
[18] SONG Z F, MA X H, ZHANG R. Enhanced finite-control-set model predictive flux control of permanent magnet synchronous machines with minimum torque ripples[J]. IEEE Transactions on Industrial Electronics, 2021, 68(9):7804-7813.
[19] GONG C, HU Y H, MA M Y, et al. Novel analytical weighting factor tuning strategy based on state normalization and variable sensitivity balance for PMSM FCS-MPTC[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3):1690-1694.
[20] ROJAS C A, RODRIGUEZ J, VILLARROEL F, et al. Predictive torque and flux control without weighting factors[J]. IEEE Transactions on Industrial Electronics, 2013, 60(2):681-690.
[21] NORAMBUENA M, RODRIGUEZ J, ZHANG Z B, et al. A very simple strategy for high-quality performance of AC machines using model predictive control[J]. IEEE Transactions on Power Electronics, 2019, 34(1):794-800.
[22] MACHADO O, MARTÍN P, RODRÍGUEZ F J, et al. A neural network-based dynamic cost function for the implementation of a predictive current controller[J]. IEEE Transactions on Industrial Informatics, 2017, 13(6):2946-2955.
[23] ROJAS C A, RODRIGUEZ J R, KOURO S, et al. Multiobjective fuzzy-decision-making predictive torque control for an induction motor drive[J]. IEEE Transactions on Power Electronics, 2017, 32(8):6245-6260.
[24] WANG F X, LI J X, LI Z, et al. Design of model predictive control weighting factors for PMSM using Gaussian distribution-based particle swarm optimization[J]. IEEE Transactions on Industrial Electronics, 2022, 69(11):10935-10946.
[25] CORTES P, KOURO S, LA ROCCA B, et al. Guidelines for weighting factors design in model predictive control of power converters and drives[C]//2009 IEEE International Conference on Industrial Technology. Piscataway:IEEE Press,2009:1-7.
[26] KARAMANAKOS P, GEYER T. Model predictive torque and flux control minimizing current distortions[J]. IEEE Transactions on Power Electronics, 2019, 34(3):2007-2012.
[27] YAN L M, DOU M F, HUA Z G. Disturbance compensation-based model predictive flux control of SPMSM with optimal duty cycle[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(3):18721882.
[28] ZHANG Y C, ZHANG B Y, YANG H T, et al. Generalized sequential model predictive control of IM drives with field-weakening ability[J]. IEEE Transactions on Power Electronics, 2019, 34(9):8944-8955.
文章导航

/