脉冲表面电弧放电对高超声速压缩拐角的非定常控制机理
收稿日期: 2022-07-01
修回日期: 2022-07-27
录用日期: 2022-09-13
网络出版日期: 2022-09-22
Unsteady control mechanisms of hypersonic compression corner using pulsed surface arc discharge
Received date: 2022-07-01
Revised date: 2022-07-27
Accepted date: 2022-09-13
Online published: 2022-09-22
近年来较多试验研究结果表明脉冲表面电弧放电等离子体对高超声速流动中激波位置和激波/边界层干扰有较好的控制能力。由于短放电时间、强电磁干扰和有限的放电区域,使得试验定量测量非常困难,多数试验仅获得了定性的纹影试验结果。为揭示脉冲表面电弧放电等离子体高超声速流动非定常控制机理,需要建立表面电弧放电等离子体与高超声速流动相互作用数值模拟方法。采用数值模拟和试验相结合的方法研究了脉冲表面电弧放电等离子体对高超声速压缩拐角流动的非定常控制机理。在理论分析和试验的基础上,建立了脉冲表面电弧放电唯象学模型,即将电弧放电产生的焦耳热作为空间功率密度源项添加到能量方程中,模拟脉冲表面电弧放电等离子体与高超声速压缩拐角流动之间的相互作用。与试验结果对比分析表明,不同时刻数值模拟纹影与试验纹影吻合,能较准确模拟电弧丝与流动之间的相互作用过程,验证了唯象学模型的正确性。非定常数值模拟结果揭示了电弧放电等离子体与双楔高超声速流动相互作用机理:表面电弧放电产生的局部焦耳热诱导形成近壁分离区,导致局部位移厚度增加,形成沿壁面移动的非定常虚拟楔,从而产生激波角随时间变化的斜激波,并与前楔激波之间形成包括激波反射在内的非定常激波/激波相互作用。放电形成的热气体团对后楔斜激波具有明显调控能力。在单脉冲放电控制过程中,最大减阻量约2%,最大俯仰力矩变化量约3%。
丁博 , 陈真利 , 焦子涵 , 王锦程 , 李铮 , 白光辉 . 脉冲表面电弧放电对高超声速压缩拐角的非定常控制机理[J]. 航空学报, 2023 , 44(12) : 127744 -127744 . DOI: 10.7527/S1000-6893.2022.27744
A large number of experimental results indicate that the pulsed surface arc discharge plasma has a good ability to control the shock position and Shock Wave/Boundary Layer Interaction (SWBLI) in the hypersonic flows. Because of the short discharge time, strong electromagnetic interference and limited discharge area, it is difficult to obtain quantitative experimental data. In most experiments only qualitative Schlieren images were obtained. To reveal the unsteady control mechanism of pulsed surface arc discharge plasma, it is necessary to establish a numerical simulation method for the interactions between the surface arc discharge plasma and the hypersonic flows. In present work, the unsteady control mechanism of pulsed surface arc discharge plasma on hypersonic compression corner flow is studied by using numerical and experimental methods. Based on the theoretical analysis and experimental results, a three-dimensional phenomenological model of the pulsed surface arc discharge is established. Joule-heating generated by arc discharge is added to the energy equation as a spatial power density source term to simulate the interaction between the surface arc discharge plasma and the hypersonic compression corner flow. The numerical Schlieren images at different time were well predicted compared with that of experiment, which verifies the correctness of the phenomenological model. The unsteady numerical results reveal the interaction mechanism between the arc discharge plasma and the double wedge hypersonic flow. The local Joule-heating generated by the surface arc discharge induces the formation of the near-wall separation zone, leading to the increase of the local displacement thickness and the formation of the unsteady virtual wedge moving along the wall. The moving virtual wedge generates an oblique shock wave with varying strength, which was reflected by the front wedge shock wave forming an unsteady shock/shock interaction. The thermal gas bulb generated by arc discharge can effectively regulate the oblique shock wave. In a single pulse discharge, the maximum drag reduction is around 2%, and the maximum pitch moment change is around 3%.
1 | 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405. |
WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405 (in Chinese). | |
2 | MOREAU E, TOUCHARD G. Enhancing the mechanical efficiency of electric wind in corona discharges[J]. Journal of Electrostatics, 2008, 66(1-2): 39-44. |
3 | MESTIRI R, HADAJI R, NASRALLAH S BEN. An experimental study of a plasma actuator in absence of free airflow: Ionic wind velocity profile[J]. Physics of Plasmas, 2010, 17(8): 083503. |
4 | COLAS D F, FERRET A, PAI D Z, et al. Ionic wind generation by a wire-cylinder-plate corona discharge in air at atmospheric pressure[J]. Journal of Applied Physics, 2010, 108(10): 103306. |
5 | BENARD N, MOREAU E. Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control[J]. Experiments in Fluids, 2014, 55(11): 1-43. |
6 | LEONOV S B, ADAMOVICH I V, SOLOVIEV V R. Dynamics of near-surface electric discharges and mechanisms of their interaction with the airflow[J]. Plasma Sources Science and Technology, 2016, 25(6): 063001. |
7 | THOMAS F O, CORKE T C, DUONG A, et al. Turbulent drag reduction using pulsed-DC plasma actuation[J]. Journal of Physics D: Applied Physics, 2019, 52(43): 434001. |
8 | MHITARYAN A M, LABINOV S D, FRIDLAND V. Some problem of aerodynamics and electro-hydrodynamics[J]. Kievs Institute of Civil Aviation Engineers, 1964, 1(1):221-234. |
9 | MACHERET S O, SHNEIDER M N, MILES R B. Magnetohydrodynamic and electrohydrodynamic control of hypersonic flows of weakly ionized plasmas[J]. AIAA Journal, 2004, 42(7): 1378-1387. |
10 | SHIN J, NARAYANASWAMY V, RAJA L, et al. Generation of plasma induced flow actuation by DC glow-like discharge in a supersonic flow[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. 2006: 169. |
11 | ANDERSON K, KNIGHT D D. Interaction of heated filaments with a blunt cylinder in supersonic flow[J]. Shock Waves, 2011, 21(2): 149-161. |
12 | CHIATTO M, DE LUCA L. Numerical and experimental frequency response of plasma synthetic jet actuators[C]∥55th AIAA Aerospace Sciences Meeting. 2017: 1884. |
13 | ZONG H, KOTSONIS M. Formation, evolution and scaling of plasma synthetic jets[J]. Journal of Fluid Mechanics, 2018, 837: 147-181. |
14 | 陈加政, 胡国暾, 樊国超, 等. 等离子体合成射流对钝头激波的控制与减阻[J]. 航空学报, 2021, 42(7): 124773. |
CHEN J Z, HU G T, FAN G C, et al. Bow shock wave control and drag reduction by plasma synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124773 (in Chinese). | |
15 | 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. |
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese). | |
16 | SAMIMY M, ADAMOVICH I, WEBB B, et al. Development and characterization of plasma actuators for high-speed jet control[J]. Experiments in Fluids, 2004, 37(4): 577-588. |
17 | UTKIN Y G, KESHAV S, KIM J H, et al. Development and use of localized arc filament plasma actuators for high-speed flow control[J]. Journal of Physics D: Applied Physics, 2006, 40(3): 685-694. |
18 | SAMIMY M, KIM J H, KASTNER J, et al. Active control of high-speed and high-Reynolds-number jets using plasma actuators[J]. Journal of Fluid Mechanics, 2007, 578: 305-330. |
19 | SAMIMY M, KIM J H, KEARNEY-FISCHER M, et al. Acoustic and flow fields of an excited high Reynolds number axisymmetric supersonic jet[J]. Journal of Fluid Mechanics, 2010, 656: 507-529. |
20 | WEBB N, CLIFFORD C, SAMIMY M. Control of oblique shock wave/boundary layer interactions using plasma actuators[J]. Experiments in fluids, 2013, 54(6): 1-13. |
21 | YUGULIS K, HANSFORD S, GREGORY J W, et al. Control of high subsonic cavity flow using plasma actuators[J]. AIAA Journal, 2014, 52(7): 1542-1554. |
22 | WEBB N, SAMIMY M. Control of supersonic cavity flow using plasma actuators[J]. AIAA Journal, 2017, 55(10): 3346-3355. |
23 | LEONOV S B, YARANTSEV D A. Near-surface electrical discharge in supersonic airflow: properties and flow control[J]. Journal of Propulsion and Power, 2008, 24(6): 1168-1181. |
24 | RAIZER Y P, ALLEN J E. Gas discharge physics[M]. Berlin: Springer, 1991. |
25 | LEONOV S B, HOUPT A, HEDLUND B, et al. Controllable shock wave generation by near-surface electrical discharge[C]∥47th AIAA Plasmadynamics and Lasers Conference. 2016: 4306. |
26 | FALEMPIN F, FIRSOV A A, YARANTSEV D A, et al. Plasma control of shock wave configuration in off-design mode of M= 2 inlet[J]. Experiments in Fluids, 2015, 56(3): 1-10. |
27 | WATANABE Y, HOUPT A, LEONOV S B. Plasma-assisted control of supersonic flow over a compression ramp[J]. Aerospace, 2019, 6(35): 1-13. |
28 | WATANABE Y, ELLIOTT S, HOUPT A W, et al. Q-DC plasma actuation for Mach-4 supersonic flow control over compression ramp[C]∥AIAA Scitech 2020 Forum. 2020: 1889. |
29 | WATANABE Y, LEONOV S B, HOUPT A W. Plasma-based control of Mach-2 supersonic flow over compression ramp[C]∥AIAA Scitech 2019 Forum. 2019: 1348. |
30 | WATANABE Y, ELLIOTT S, FIRSOV A, et al. Rapid control of force/momentum on a model ramp by quasi-DC plasma[J]. Journal of Physics D: Applied Physics, 2019, 52(44): 444003. |
31 | GAN T, WU Y, SUN Z, et al. Shock wave boundary layer interaction controlled by surface arc plasma actuators[J]. Physics of Fluids, 2018, 30(5): 055107. |
32 | 王宏宇, 杨彦广, 胡伟波, 等. 高频微秒脉冲放电控制激波/边界层干扰非定常性的试验研究[J]. 航空学报, 2022, 43(1):625905. |
WANG H Y, YANG Y G, HU W B, et al. Experimental study on unsteadiness characterizations of shock wave/turbulent boundary layer interaction controlled by high-frequency microsecond pulse discharge[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625905 (in Chinese). | |
33 | TANG M, WU Y, GUO S, et al. Effect of the streamwise pulsed arc discharge array on shock wave/boundary layer interaction control[J]. Physics of Fluids, 2020, 32(7): 076104. |
34 | TANG M, WU Y, GUO S, et al. Compression ramp shock wave/boundary layer interaction control with high-frequency streamwise pulsed spark discharge array[J]. Physics of Fluids, 2020, 32(12): 121704. |
35 | TIAN G, QIONG W. Mechanisms of SWBLI control by using a surface arc plasma actuator array[J]. Experimental Thermal and Fluid Science, 2021, 128: 110428. |
36 | LEONOV S, YARANTSEV D, GROMOV V, et al. Mechanisms of flow control by near-surface electrical discharge generation[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005: 780. |
37 | LEONOV S B, YARANTSEV D A. Control of separation phenomena in a high-speed flow by means of the surface electric discharge[J]. Fluid Dynamics, 2008, 43(6): 945-953. |
38 | LEONOV S, FIRSOV A, YARANTSEV D, et al. Plasma effect on shocks configuration in compression ramp[C]∥17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2011: 2362. |
39 | DESHPANDE A S, POGGIE J. Flow control of swept shock-wave/boundary-layer interaction using plasma actuators[J]. Journal of Spacecraft and Rockets, 2018, 55(5): 1198-1207. |
40 | SUN Q, CHENG B, YU Y, et al. A study of variation patterns of shock wave control by different plasma aerodynamic actuations[J]. Plasma Science and Technology, 2010, 12(6): 708-714. |
41 | SUN Q, LI Y, CHENG B, et al. The characteristics of surface arc plasma and its control effect on supersonic flow[J]. Physics Letters A, 2014, 378(36): 2672-2682. |
42 | PARK C. Assessment of two-temperature kinetic model for ionizing air[J]. Journal of thermophysics and Heat Transfer, 1989, 3(3): 233-244. |
43 | GUPTA R N, YOS J M, THOMPSON R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA-TM-101528 [R]. 1989. |
44 | WATANABE Y, SUZUKI K. Investigation of arc plasma discharge in hypersonic flow over compression and expansion corner[C]∥44th AIAA Plasmadynamics and Lasers Conference. 2013: 3130. |
45 | BISEK N J, BOYD I D, POGGIE J. Numerical study of plasma-assisted aerodynamic control for hypersonic vehicles[J]. Journal of Spacecraft and Rockets, 2009, 46(3): 568-576. |
46 | MACLEAN M, HOLDEN M S, DUFRENE A. Measurements of real gas effects on regions of laminar shock wave/boundary layer interaction in hypervelocity flows[C]∥AIAA Aviation. 2014. |
47 | HOUPT A, HEDLUND B, LEONOV S, et al. Quasi-DC electrical discharge characterization in a supersonic flow[J]. Experiments in Fluids, 2017, 58(4): 1-17. |
/
〈 |
|
〉 |