论文

基于改进冲突搜索的多智能体路径规划算法

  • 于连波 ,
  • 曹品钊 ,
  • 石亮 ,
  • 连捷 ,
  • 王东
展开
  • 1.大连理工大学 电子信息与电气工程学部 控制科学与工程学院,大连 116024
    2.中国航空研究院,北京 100012
.E-mail: dwang@dlut.edu.cn

收稿日期: 2022-06-20

  修回日期: 2022-07-10

  录用日期: 2022-09-06

  网络出版日期: 2022-09-22

基金资助

国家重点研发计划(2019YFE0197700);国家自然科学基金(61973050);辽宁省兴辽英才计划(XLYC

An improved conflict⁃based search algorithm for multi⁃agent path planning

  • Lianbo YU ,
  • Pinzhao CAO ,
  • Liang SHI ,
  • Jie LIAN ,
  • Dong WANG
Expand
  • 1.School of Control Science and Engineering,Faculty of Electronic Information and Electrical Engineering,Dalian University of Technology,Dalian 116024,China
    2.Chinese Aeronautical Establishment,Beijing 100012,China
E-mail: dwang@dlut.edu.cn

Received date: 2022-06-20

  Revised date: 2022-07-10

  Accepted date: 2022-09-06

  Online published: 2022-09-22

Supported by

National Key Research and Development Program of China(2019YFE0197700);National Natural Science Foundation of China(61973050);Liaoning Revitalization Talents Program(XLYC2007010);Fundamental Research Funds for the Central Universities(DUT20GJ209)

摘要

多智能体路径规划问题在航空航天领域的多机任务中应用广泛但求解困难。基于改进冲突搜索的算法被设计用来快速求解多智能体路径规划问题。全局路径规划方面,首先设计综合考虑路径代价总和以及最大完工时间的多目标代价函数,其次提出基于唯一最短路径的冲突分类及消解方案,降低多智能体路径规划的计算量。在线冲突消解方面,利用速度障碍法在线检测和消解智能体与动态障碍物间的突发冲突。仿真结果表明,本文算法在全局路径规划方面保留基于冲突搜索算法的最优性并且降低了算法计算量,同时本文算法能够有效实现在线冲突检测与消解。

本文引用格式

于连波 , 曹品钊 , 石亮 , 连捷 , 王东 . 基于改进冲突搜索的多智能体路径规划算法[J]. 航空学报, 2023 , 44(S1) : 727648 -727648 . DOI: 10.7527/S1000-6893.2022.27648

Abstract

The multi-agent path planning problem is widely used in multi-machine tasks in the aerospace field, but it is difficult to solve the problem. The improved conflict-based search algorithm is designed to quickly solve the multi-agent path planning problem. In terms of global path planning, a multi-objective cost function is designed to give a comprehensive consideration of the sum of path costs and the make span, and a conflict classification and resolution scheme based on the unique shortest path is then proposed to reduce the computational cost of multi-agent path planning. In terms of online conflict resolution, the velocity obstacle method is used to detect and resolve the sudden conflict between agents and dynamic obstacles. Simulation results show that the algorithm proposed retains the optimality of the conflict-based search algorithm in global path planning and reduces the amount of calculation. Thus, this algorithm can effectively realize online conflict detection and resolution.

参考文献

1 万逸飞, 彭力. 基于协同多目标算法的多机器人路径规划[J]. 信息与控制202049(2): 139-146.
  WAN Y F, PENG L. Multi-robot path planning based on cooperative multi-objective algorithm[J]. Information and Control202049(2): 139-146 (in Chinese).
2 晁永生, 孙文磊. 动态修改路径的多机器人路径规划[J]. 机械科学与技术201837(10): 1483-1488.
  CHAO Y S, SUN W L. Dynamic path modification for multi-robot path planning[J]. Mechanical Science and Technology for Aerospace Engineering201837(10): 1483-1488 (in Chinese).
3 曹其新, 黄先群, 朱笑笑, 等. 基于保留区域的分布式多机器人路径规划[J]. 华中科技大学学报(自然科学版)201846(12): 71-76.
  CAO Q X, HUANG X Q, ZHU X X, et al. Distributed multi-robot path planning based on reserved area[J] Journal of Huazhong University of Science and Technology (Natural Science Edition)201846(12):71-76 (in Chinese).
4 OROZCO-ROSAS U, MONTIEL O, SEPúLVEDA R. Mobile robot path planning using membrane evolutionary artificial potential field[J]. Applied Soft Computing201977: 236-251.
5 BHATTACHARYA P, GAVRILOVA M L. Roadmap-based path planning-using the Voronoi diagram for a clearance-based shortest path[J]. IEEE Robotics & Automation Magazine200815(2): 58-66.
6 胡章芳, 冯淳一, 罗元. 改进粒子群优化算法的移动机器人路径规划[J]. 计算机应用研究202138(10): 3089-3092.
  HU Z F, FENG C Y, LUO Y. Improved particle swarm optimization algorithm for mobile robot path planning[J]. Application Research of Computers202138(10): 3089-3092 (in Chinese).
7 蒋强, 易春林, 张伟, 等. 基于蚁群算法的移动机器人多目标路径规划[J]. 计算机仿真202138(2): 318-325.
  JIANG Q, YI C L, ZHANG W, et al. The multi-objective path planning for mobile robot based on ant colony algorithm[J]. Computer Simulation202138(2): 318-325 (in Chinese).
8 LIU C, LIU H, YANG J. A path planning method based on adaptive genetic algorithm for mobile robot[J]. Journal of Information & Computational Science20118(5): 808-814.
9 SHARON G, STERN R, FELNER A, et al. Conflict-based search for optimal multi-agent pathfinding[J]. Artificial Intelligence2015219: 40-66.
10 MA H, LI J Y, KUMAR T K S, et al. Lifelong multiagent path finding for online pickup and delivery tasks[C]∥ Proceedings of the 16th Conference on Autonomous Agents and Multi-Agent Systems, 2017: 837-845.
11 MA H, YANG J, COHEN L, et al. Feasibility study: moving non-homogeneous teams in congested video game environments[C]∥ Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, 201713(1): 270-272.
12 H?NIG W, PREISS J A, KUMAR T K S, et al. Trajectory planning for quadrotor swarms[J]. IEEE Transactions on Robotics201834(4): 856-869.
13 BARER M, SHARON G, STERN R Z, et al. Suboptimal variants of the conflict-based search algorithm for the multi-agent pathfinding problem[C]∥ Proceedings of the 7th Annual Symposium on Combinatorial Search, 2014: 19-27.
14 COHEN L, KOENIG S. Bounded suboptimal multi-agent path finding using highways[C]∥ Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016: 978-3979.
15 BOYARSKI E, FELNER A, STERN R, et al. ICBS: Improved conflict-based search algorithm for multi-agent pathfinding[C]∥ Proceedings of the 24th International Conference on Artificial Intelligence, 2015: 740-746.
16 FELNER A, LI J, BOYARSKI E, et al. Adding heuristics to conflict-based search for multi-agent path finding[C]∥ Proceedings of the International Conference on Automated Planning and Scheduling, 201828: 83-87.
17 LI J, FELNER A, BOYARSKI E, et al. Improved heuristics for multi-agent path finding with conflict-based search[C]∥ Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 442-449.
18 LI J, HARABOR D, STUCKEY P J, et al. Symmetry-breaking constraints for grid-based multi-agent path finding[C]∥ Proceedings of the AAAI Conference on Artificial Intelligence, 201933(1): 6087-6095.
19 COHEN L, WAGNER G, CHAN D, et al. Rapid randomized restarts for multi-agent path finding solvers[C]∥ Proceedings of Eleventh Annual Symposium on Combinatorial Search, 2018: 148-152.
20 FIORINI P, SHILLER Z. Motion planning in dynamic environments using velocity obstacles[J]. The International Journal of Robotics Research199817(7): 760-772.
21 DURAND N, BARNIER N. Does ATM need centralized coordination? autonomous conflict resolution analysis in a constrained speed environment[J]. Air Traffic Control Quarterly201523(4): 325-346.
22 杨秀霞,周硙硙,张毅.基于速度障碍圆弧法的UAV自主避障规划研究[J].系统工程与电子技术201739(1): 168-176.
  YANG X X, ZHOU W W, ZHANG Y. Automatic obstacle avoidance planning for UVA based on velocity obstacle arc method[J]. Systems Engineering and Electronics201739(1): 168-176 (in Chinese).
23 DURAND N. Constant speed optimal reciprocal collision avoidance[J]. Transportation Research Part C: Emerging Technologies201896: 366-379.
文章导航

/