高焓激波/湍流边界层干扰直接数值模拟
收稿日期: 2022-07-20
修回日期: 2022-08-30
录用日期: 2022-09-07
网络出版日期: 2022-09-13
基金资助
国家重点研发计划(2019YFA0405201);国家数值风洞项目
Direct numerical simulation of high enthalpy shock wave/turbulent boundary layer interaction
Received date: 2022-07-20
Revised date: 2022-08-30
Accepted date: 2022-09-07
Online published: 2022-09-13
Supported by
National Key Research and Development Program of China(2019YFA0405201);National Numerical Windtunnel Project
激波/湍流边界层干扰是高速飞行器表面常见的一种流动现象。当前高超声速飞行器的飞行马赫数不断提高,在头部激波后的高温环境中空气可能发生离解,出现高焓激波/湍流边界层干扰。相比于完全气体,高焓流动中化学非平衡效应可能与湍流、激波发生强烈的耦合作用,使流动情况变得更加复杂,目前相关研究较少,缺乏对此类流动的深入认识。选取高超声速楔形体头部斜激波后的高焓流动状态开展高焓激波/湍流边界层干扰直接数值模拟,并与相似工况的低焓流动对比,研究高温化学非平衡效应对流动分离的影响机制和组分扩散带来的影响。结果表明:高温化学非平衡效应对雷诺应力分布和湍动能输运过程的影响不明显;对流动分离影响显著,高焓流动的分离区远小于低焓流动,这可能是来流边界层动量增大和分离泡密度增大共同作用造成的。流动分离非定常分析表明高焓工况流动分离状态为瞬变分离,而低焓工况为平均分离;两者回流面积中的能量都以中低频为主,但低焓工况低频能量占比更大。进一步对高焓工况干扰区内的流向速度脉动和O组分质量分数脉动进行特征正交分解分析,发现分离泡变化过程中的能量主要集中在剪切层,这与低焓流动一致;气体组分的能量模态在分离激波处最高,表明激波是引起组分脉动的主要原因。
关键词: 高超声速; 激波/湍流边界层干扰; 化学非平衡; 直接数值模拟; 非定常流动分离
刘晓东 , 刘朋欣 , 李辰 , 孙东 , 袁先旭 . 高焓激波/湍流边界层干扰直接数值模拟[J]. 航空学报, 2023 , 44(13) : 127832 -127832 . DOI: 10.7527/S1000-6893.2022.27832
Shock wave/turbulent boundary layer interaction widely exists in the external flow of hypersonic aircraft. With the increase in the flight Mach number of new hypersonic aircraft, the gas may dissociate in the high-temperature environment after the leading shock, resulting in high enthalpy shock wave/turbulent boundary layer interaction. Compared with perfect gas, the chemical nonequilibrium effect in high enthalpy flow may have a strong coupling effect with turbulence and shock wave, further complicating the flying environment. However, related studies are limited. This study performed direct numerical simulation of high enthalpy shock wave/turbulent boundary layer interaction based on the flow condition after the leading shock of a cone in the hypersonic flight. Compared with the low enthalpy flow under similar conditions, the influence mechanism of high-temperature chemical nonequilibrium effect on flow separation and the influence of component diffusion are studied. The results show that the effects of high-temperature chemical nonequilibrium on Reynolds stress distribution and turbulent kinetic energy transport are not obvious. However, it has a significant impact on flow separation. The separation area of high enthalpy flow is much smaller than that at low enthalpy, possibly due to the increasing momentum of the upstream boundary layer and the increasing density of the separation bubble. Unsteady analysis reveals that the flow separation state under the high enthalpy condition is transient separation while average separation under the low enthalpy condition. The energy in the reverse area under both conditions is mainly low and middle frequency, although the low frequency energy under the low enthalpy condition accounts for a larger proportion. Furthermore, through the proper orthogonal decomposition of the streamwise velocity pulsation and oxygen atoms mass fraction pulsation in the high enthalpy interaction area, it is found that the energy during the separation bubble change mainly concentrates in the shear layer, consistent with the result of low enthalpy. The energy modes of the gas component are the highest at the separation shock wave, indicating that the shock wave is the main cause for the component pulsation.
1 | FERRI A. Experimental results with airfoils tested in the high speed tunnel at guidonia: NACA TM 946[R]. Washington, D. C.: NACA, 1940. |
2 | ADAMS N A. Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Reθ = 1685[J]. Journal of Fluid Mechanics, 2000, 420: 47-83. |
3 | WU M, MARTíN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4): 879-889. |
4 | VOLPIANI P S, BERNARDINI M, LARSSON J. Investigating the effects of non-adiabatic walls on shock/boundary-layer interaction at low Reynolds number using direct numerical simulations[C]∥ 2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018. |
5 | ZHU X K, YU C P, TONG F L, et al. Numerical study on wall temperature effects on shock wave/turbulent boundary-layer interaction[J]. AIAA Journal, 2017, 55(1): 131-140. |
6 | 范孝华, 唐志共, 王刚, 等. 激波/湍流边界层干扰低频非定常性研究评述[J]. 航空学报, 2022, 43(1): 625917. |
FAN X H, TANG Z G, WANG G, et al. Review of low-frequency unsteadiness in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625917 (in Chinese). | |
7 | 段俊亦, 童福林, 李新亮, 等. 压缩-膨胀湍流边界层平均摩阻分解[J]. 航空学报, 2022, 43(1): 625915. |
DUAN J Y, TONG F L, LI X L, et al. Decomposition of mean friction drag in compression-expansion turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625915 (in Chinese). | |
8 | 童福林, 李欣, 于长平, 等. 高超声速激波湍流边界层干扰直接数值模拟研究[J]. 力学学报, 2018, 50(2): 197-208. |
TONG F L, LI X, YU C P, et al. Direct numerical simulation of hypersonic shock wave and turbulent boundary layer interactions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208 (in Chinese). | |
9 | 孙东, 刘朋欣, 沈鹏飞, 等. 马赫数6柱-裙激波/边界层干扰直接模拟[J]. 航空学报, 2021, 42(12): 124681. |
SUN D, LIU P X, SHEN P F, et al. Direct numerical simulation of shock wave/turbulent boundary layer interaction in hollow cylinder-flare configuration at Mach number 6[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 124681 (in Chinese). | |
10 | 沈鹏飞, 刘朋欣, 孙东, 等. 马赫6柱-裙构型激波/湍流边界层干扰摩阻统计特性[J]. 航空学报, 2022, 43(1): 626005. |
SHEN P F, LIU P X, SUN D, et al. Statistical characteristics of skin friction of shock wave/turbulent boundary layer interaction in hollow cylinder-flare configuration at Mach 6[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 626005 (in Chinese). | |
11 | MARTíN M P, CANDLER G V. Effect of chemical reactions on decaying isotropic turbulence[J]. Physics of Fluids, 1998, 10(7): 1715-1724. |
12 | MARTíN M P, CANDLER G V. Subgrid-scale model for the temperature fluctuations in reacting hypersonic turbulent flows[J]. Physics of Fluids, 1999, 11(9): 2765-2771. |
13 | MARTíN M P, CANDLER G V. DNS of a Mach 4 boundary layer with chemical reactions[C]∥ 38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000. |
14 | DUAN L, MARTíN M P. Assessment of turbulence-chemistry interaction in hypersonic turbulent boundary layers[J]. AIAA Journal, 2011, 49(1): 172-184. |
15 | DUAN L, MARTíN M P. Procedure to validate direct numerical simulations of wall-bounded turbulence including finite-rate reactions[J]. AIAA Journal, 2009, 47(1): 244-251. |
16 | KIM P. Non-equilibrium effects on hypersonic turbulent fornia, Los Angeles, 2016. |
17 | 刘朋欣, 李辰, 孙东, 等. 考虑化学非平衡效应的高温湍流边界层统计特性分析[J]. 空气动力学学报, 2022, 40(4): 124-131. |
LIU P X, LI C, SUN D, et al. Statistical characteristics of high-temperature turbulent boundary layer considering chemical non-equilibrium effect[J]. Acta Aerodynamica Sinica, 2022, 40(4): 124-131 (in Chinese). | |
18 | 刘朋欣, 袁先旭, 孙东, 等. 高温化学非平衡湍流边界层直接数值模拟[J]. 航空学报, 2022, 43(1): 124877. |
LIU P X, YUAN X X, SUN D, et al. Direct numerical simulation of high-temperature turbulent boundary layer with chemical nonequilibrium[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124877 (in Chinese). | |
19 | 刘朋欣, 孙东, 李辰, 等. 高焓湍流边界层壁面摩阻产生机制分析[J]. 力学学报, 2022, 54(1): 39-47. |
LIU P X, SUN D, LI C, et al. Analyses on generation mechanism of skin friction in high enthalpy turbulent boundary layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 39-47 (in Chinese). | |
20 | DI RENZO M, URZAY J. Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies[J]. Journal of Fluid Mechanics, 2021, 912: A29. |
21 | PASSIATORE D, SCIACOVELLI L, CINNELLA P, et al. Thermochemical non-equilibrium effects in turbulent hypersonic boundary layers[J]. Journal of Fluid Mechanics, 2022, 941: A21. |
22 | VOLPIANI P S. Numerical strategy to perform direct numerical simulations of hypersonic shock/boundary-layer interaction in chemical nonequilibrium[J]. Shock Waves, 2021, 31(4): 361-378. |
23 | LI Q, LIU P X, ZHANG H X. Further investigations on the interface instability between fresh injections and burnt products in 2-D rotating detonation[J]. Computers & Fluids, 2018, 170: 261-272. |
24 | SUN D, GUO Q L, LI C, et al. Assessment of optimized symmetric fourth-order weighted essentially non-oscillatory scheme in direct numerical simulation of compressible turbulence[J]. Computers & Fluids, 2020, 197: 104383. |
25 | SUN D, GUO Q L, YUAN X X, et al. A decomposition formula for the wall heat flux of a compressible boundary layer[J]. Advances in Aerodynamics, 2021, 3(1): 1-13. |
26 | SUN D, CHEN J Q, LI C, et al. On the wake structure of a micro-ramp vortex generator in hypersonic flow[J]. Physics of Fluids, 2020, 32(12): 126111. |
27 | GUPTA R, YOS J, THOMPSON R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA 1232[R]. Washington, D.C.: NASA, 1989. |
28 | 刘朋欣, 袁先旭, 梁飞, 等. 高温化学非平衡湍流边界层脉动量象限分析[J]. 航空学报, 2021, 42(S1): 726338. |
LIU P X, YUAN X X, LIANG F, et al. Quadrant decomposition analysis of fluctuations in high-temperature turbulent boundary layer with chemical non-equilibrium[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726338 (in Chinese). | |
29 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
30 | ADLER M C, GONZALEZ D R, STACK C M, et al. Synthetic generation of equilibrium boundary layer turbulence from modeled statistics[J]. Computers & Fluids, 2018, 165: 127-143. |
31 | DUAN L, BEEKMAN I, MARTíN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature[J]. Journal of Fluid Mechanics, 2010, 655: 419-445. |
32 | DUAN L, MARTíN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy[J]. Journal of Fluid Mechanics, 2011, 684: 25-59. |
33 | PIROZZOLI S, BERNARDINI M, GRASSO F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer[J]. Journal of Fluid Mechanics, 2008, 613: 205-231. |
34 | HUANG P G, COLEMAN G N, BRADSHAW P. Compressible turbulent channel flows: DNS results and modelling[J]. Journal of Fluid Mechanics, 1995, 305: 185-218. |
35 | ROY C J, BLOTTNER F G. Review and assessment of turbulence models for hypersonic flows[J]. Progress in Aerospace Sciences, 2006, 42(7-8): 469-530. |
36 | NEUMANN R D. Special topics in hypersonic flow[M]∥ Aerodynamic Problems of Hypersonic Vehicles. Brussels: Von Karman Inst, 1972. |
37 | SIMPSON R L. Turbulent boundary-layer separation[J]. Annual Review of Fluid Mechanics, 1989, 21: 205-232. |
38 | SIROVICH L. Turbulence and the dynamics of coherent structures. I. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561-571. |
/
〈 |
|
〉 |