流体力学与飞行力学

二元激波矢量喷管矢量性能敏感性分析

  • 舒博文 ,
  • 黄江涛 ,
  • 高正红 ,
  • 刘刚 ,
  • 何成军 ,
  • 夏露
展开
  • 1.西北工业大学 航空学院,西安 710072
    2.中国空气动力研究与发展中心 空天技术研究所,绵阳 621000
    3.中国空气动力研究与发展中心,绵阳 621000
.E-mail: zgao@nwpu.edu.cn

收稿日期: 2022-07-19

  修回日期: 2022-08-08

  录用日期: 2022-09-06

  网络出版日期: 2022-09-13

基金资助

国防预研基金(50906010101);翼型叶栅重点实验室基金(6142201200106)

Sensitivity analysis of vector performance of two⁃dimensional shock vector control nozzle

  • Bowen SHU ,
  • Jiangtao HUANG ,
  • Zhenghong GAO ,
  • Gang LIU ,
  • Chengjun HE ,
  • Lu XIA
Expand
  • 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.Aerospace Technology Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China
    3.China Aerodynamics Research and Development Center,Mianyang 621000,China
E-mail: zgao@nwpu.edu.cn

Received date: 2022-07-19

  Revised date: 2022-08-08

  Accepted date: 2022-09-06

  Online published: 2022-09-13

Supported by

National Defence Pre-research Foundation(50906010101);Key Laboratory Foundation(6142201200106)

摘要

流体推力矢量技术因其响应快、重量轻、隐身性能好等优势被视为极低可探测布局飞行器发展的关键技术。目前针对流体推力矢量喷管性能的研究主要集中在单变量研究,开展流体推力矢量喷管多变量敏感性分析,有助于明确影响喷管矢量性能的关键参数,指导流体推力矢量喷管设计。基于非嵌入多项式混沌的敏感性分析方法开展了二元激波矢量喷管不同目标对外流马赫数、射流位置、射流角度、喷管落压比(NPR)、二次流压比(SPRt)、主流温比、次流温比共7个设计变量的全局敏感性及相关性分析研究。结果表明:矢量角和矢量效率对射流位置敏感性显著,推力系数对NPR、外流马赫数、二次流压比的敏感性较强,二次流流量比对NPR、SPRt较敏感,主流及次流总温与环境温度的比值对矢量性能的贡献主要体现在二次流流量比中。矢量角和二次流流量比的提升均导致推力损失,又以二次流流量比影响最大。外流马赫数的增大改变了喷管的实际压比,降低了喷管的矢量性能。二次流位置靠近喉道时,射流前分离延伸至喉道,射流后分离在大NPR下发生再附,喷管气动型面变化导致矢量性能下降,严重时发生矢量角反向。激波矢量喷管设计时应使射流位置靠近喷管出口,通过调整射流角度使喷管内弓形激波在给定NPR、SPRt下发展至喷管出口附近,从而在不增加二次流流量比的情况下提升矢量性能。合理的参数组合可以缓解外流马赫数增大对喷管矢量性能的负面影响,且可在不增大二次流流量比的情况下提升喷管矢量性能。

本文引用格式

舒博文 , 黄江涛 , 高正红 , 刘刚 , 何成军 , 夏露 . 二元激波矢量喷管矢量性能敏感性分析[J]. 航空学报, 2023 , 44(13) : 127831 -127831 . DOI: 10.7527/S1000-6893.2022.27831

Abstract

Fluid thrust vectoring technology is regarded as a key technology for the development of very low detectable vehicles because of its advantages such as fast response, light weight and good stealth performance. The current research on the performance of fluid thrust vectoring nozzles is mainly focused on univariate studies. Multivariate sensitivity analysis of fluid thrust vectoring nozzles is carried out to help clarify the key parameters affecting the nozzle vectoring performance, and guide the design of fluid thrust vectoring nozzles. The sensitivity analysis method based on non-intrusive polynomial chaos was carried out to investigate the global sensitivity analysis of seven design variables such as Mach number of outflow, jet position, jet angle, Nozzle Pressure Ratio (NPR) and correlation analysis for different targets of the two-dimensional Shock Vector Control (SVC) nozzle. The results show that vector angle and vector efficiency are significantly sensitive to jet position; thrust coefficient is more sensitive to NPR, outflow Mach number, secondary flow pressure ratio (the ratio of total secondary flow pressure to ambient pressure SPRt). The results also show that secondary flow ratio is more sensitive to NPR, and the contribution of ratio of total mainstream and secondary flow temperature to ambient temperature to the vector performance is expressed mainly in the secondary flow ratio. The increase of both vector angle and secondary flow ratio leads to thrust loss, and the secondary flow ratio has the greatest impact. The increase in outflow Mach number changes the actual pressure ratio of the nozzle and reduces the nozzle vectoring performance. When the position of the secondary flow is close to the throat, the separation before the jet extends to the throat, and the separation after the jet reattaches under the large NPR. The change of the nozzle aerodynamic profile results in the decline of the vector performance, and in serious cases, the vector angle reversal occurs. The SVC nozzle should be designed so that the jet is positioned close to the nozzle outlet and the oblique shock wave in the nozzle is adjusted to develop near the nozzle outlet for a given NPR and SPRt, thus improves the vector performance without increasing the secondary flow ratio. A reasonable combination of parameters can mitigate the negative impact of increasing outflow Mach number on nozzle vector performance, and can improve nozzle vector performance without increasing the secondary flow ratio.

参考文献

1 FRANCIS M S. Air vehicle management with integrated thrust-vector control[J]. AIAA Journal201856(12): 4741-4751.
2 王海峰. 战斗机推力矢量关键技术及应用展望[J]. 航空学报202041(6): 524057.
  WANG H F. Key technologies and future applications of thrust vectoring on fighter aircraft[J]. Acta Aeronautica et Astronautica Sinica202041(6): 524057 (in Chinese).
3 程荣辉, 张志舒, 陈仲光. 第四代战斗机动力技术特征和实现途径[J]. 航空学报201940(3): 022698.
  CHENG R H, ZHANG Z S, CHEN Z G. Technical characteristics and implementation of the fourth-generation jet fighter engines[J]. Acta Aeronautica et Astronautica Sinica201940(3): 022698 (in Chinese).
4 KOWAL H J. Advances in thrust vectoring and the application of flow-control technology[J]. Canadian Aeronautics and Space Journal200248(2): 145-151.
5 MARUYAMA Y, SAKATA M, TAKAHASHI Y. Performance analyses of fluidic thrust vector control system using dual throat nozzle[J]. AIAA Journal202160(3): 1730-1744.
6 史经纬. 固定几何气动矢量喷管流动机理及性能评估技术研究[D]. 西安: 西北工业大学, 2015.
  SHI J W. Investigation on flow mechanism and performance estimation of fixed-geometric thrust vectoring nozzle[D]. Xi’an: Northwestern Polytechnical University, 2015 (in Chinese).
7 DEERE K. Summary of fluidic thrust vectoring research at NASA langley research center[C]∥ 21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003: 3800.
8 CHIARELLI C, JOHNSEN R, SHIEH C, et al. Fluidic scale model multi-plane thrust vector control test results[C]∥ 29th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1993: 2433.
9 WING D J, GIULIANO V J. Fluidic thrust vectoring of an axisymmetric exhaust nozzle at static conditions[C]∥1997 ASME Fluids Engineering Division Summer Meeting. New York: ASME, 1997: DWSA M97-3228.
10 DEERE K. Computational investigation of the aerodynamic effects on fluidic thrust vectoring[C]∥ 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2000: 3598.
11 WAITHE K, DEERE K. An experimental and computational investigation of multiple injection ports in a convergent-divergent nozzle for fluidic thrust vectoring[C]∥ 21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003: 3802.
12 FORGHANY F, TAEIBE-RAHNI M, ASADOLLAHI-GHOHIEH A. Numerical investigation of freestream flow effects on thrust vector control performance[J]. Ain Shams Engineering Journal20189(4): 3293-3303.
13 FORGHANY F, TAEIBE R M, ASADOLLAHI G, et al. Numerical investigation of injection angle effects on shock vector control performance[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2019233(2): 405-417.
14 YOUNES K, HICKEY J P. Fluidic thrust shock-vectoring control: A sensitivity analysis[J]. AIAA Journal202058(4): 1887-1890.
15 王占学, 李志杰. 喷管气动参数对推力矢量影响的数值模拟[J]. 推进技术200829(2): 187-193.
  WANG Z X, LI Z J. Effect of aerodynamic parameters of main and secondary flow path on thrust vectoring[J]. Journal of Propulsion Technology200829(2): 187-193 (in Chinese).
16 张晓博, 王占学, 刘增文. 气动矢量喷管二次流对发动机性能的影响[J]. 推进技术201334(1): 3-7.
  ZHANG X B, WANG Z X, LIU Z W. Influence of secondary flow in fluidic thrust vector nozzle on aero-engine performance[J]. Journal of Propulsion Technology201334(1): 3-7 (in Chinese).
17 史经纬, 王占学, 刘增文, 等. 二次流喷口形状对激波矢量控制喷管推力矢量特性影响[J]. 航空动力学报201328(12): 2678-2684.
  SHI J W, WANG Z X, LIU Z W, et al. Effects of secondary injection forms on thrust vector performance of shock vector controlling nozzle[J]. Journal of Aerospace Power201328(12): 2678-2684 (in Chinese).
18 王猛杰, 额日其太, 王强, 等. 激波矢量控制喷管落压比影响矢量性能及分离区控制数值模拟[J]. 航空动力学报201530(3): 526-536.
  WANG M J, ERIQITAI, WANG Q, et al. Numerical simulaton of nozzle pressure ratio effect on vector performance and separation control for shock vector control nozzle[J]. Journal of Aerospace Power201530(3): 526-536 (in Chinese).
19 王晓明, 刘辉, 韩龙柱, 等. 激波诱导推力矢量喷管不同气体喷注时的性能分析[J]. 北京航空航天大学学报201844(11): 2267-2272.
  WANG X M, LIU H, HAN L Z, et al. Performance analysis of shock thrust vector nozzle under different gas injections[J]. Journal of Beijing University of Aeronautics and Astronautics201844(11): 2267-2272 (in Chinese).
20 ZHAO H, GAO Z H, XU F, et al. Review of robust aerodynamic design optimization for air vehicles[J]. Archives of Computational Methods in Engineering201926(3): 685-732.
21 ZHAO H, GAO Z H, GAO Y, et al. Effective robust design of high lift NLF airfoil under multi-parameter uncertainty[J]. Aerospace Science and Technology201768: 530-542.
22 SCHAEFER J A, WEST T, HOSDER S, et al. Uncertainty quantification of turbulence model closure coefficients for transonic wall-bounded flows[C]∥ 22nd AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2015: 2461.
23 陈宪, 陈诚, 黄江涛, 等. 腹部襟翼对飞翼布局飞行器起降气动特性的影响[J]. 航空学报202243(3): 125028.
  CHEN X, CHEN C, HUANG J T, et al. Effects of belly flap on take-off and landing characteristics of a flying-wing vehicle[J]. Acta Aeronautica et Astronautica Sinica202243(3): 125028 (in Chinese).
24 舒博文, 杜一鸣, 高正红, 等. 典型航空分离流动的雷诺应力模型数值模拟[J]. 航空学报202243(11): 487-502.
  SHU B W, DU Y M, GAO Z H, et al. Numerical simulation of Reynolds stress model of typical aerospace separated flow[J]. Acta Aeronautica et Astronautica Sinica202243(11): 487-502 (in Chinese).
25 HOSDER S, WALTERS R, BALCH M. Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables[C]∥ 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: 1939.
26 SOBOL′ I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation200155(1-3): 271-280.
27 SOBOL I M, KUCHERENKO S. Derivative based global sensitivity measures and their link with global sensitivity indices[J]. Mathematics and Computers in Simulation201671(10): 3009-3017.
文章导航

/