高超声速流场等离子体合成射流逆向喷流特性

  • 马正雪 ,
  • 罗振兵 ,
  • 赵爱红 ,
  • 周岩 ,
  • 谢玮 ,
  • 刘强 ,
  • 朱寅鑫 ,
  • 彭文强
展开
  • 1.国防科技大学 空天科学学院,长沙 410073
    2.中国运载火箭技术研究院 空间物理重点实验室,北京 100076
.E-mail:luozhenbing@163.com

收稿日期: 2022-07-01

  修回日期: 2022-07-29

  录用日期: 2022-08-25

  网络出版日期: 2022-09-13

基金资助

国家自然科学基金(12002377);国家科技重大专项(J2019-Ⅲ-0010-0054)

Reverse jet characteristics of plasma synthetic jet in hypersonic flow field

  • Zhengxue MA ,
  • Zhenbing LUO ,
  • Aihong ZHAO ,
  • Yan ZHOU ,
  • Wei XIE ,
  • Qiang LIU ,
  • Yinxin ZHU ,
  • Wenqiang PENG
Expand
  • 1.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
    2.Science and Technology on Space Physics Laboratory,China Academy of Launch Vehicle Technology,Beijing 100076,China

Received date: 2022-07-01

  Revised date: 2022-07-29

  Accepted date: 2022-08-25

  Online published: 2022-09-13

Supported by

National Natural Science Foundation of China(12002377);National Science and Technology Major Project(J2019-Ⅲ-0010-0054)

摘要

为了研究在高超声速条件下逆向等离子体合成射流流场特性,进行了试验和数值研究。在马赫数为8的高超声速来流中,通过比较试验和仿真中纹影以及激励器出口压力监测结果,分析了反向等离子体合成射流的流场变化。验证了高超声速条件下,反向等离子体合成射流激励器出口压力振荡,是腔体内多次回填产生多次喷流导致多道激波扫过激励器出口所导致的;等离子体合成射流增大了射流区域外的气体质量流量,同时向上游传播的前驱激波与弓形激波融合为一道激波;在高动量射流的作用下产生的涡环、逆流产生的低压区以及高温低密度等离子体射流降低了当地马赫数,使得激波穿透深度增加。

本文引用格式

马正雪 , 罗振兵 , 赵爱红 , 周岩 , 谢玮 , 刘强 , 朱寅鑫 , 彭文强 . 高超声速流场等离子体合成射流逆向喷流特性[J]. 航空学报, 2022 , 43(S2) : 192 -203 . DOI: 10.7527/S1000-6893.2022.27747

Abstract

To study the flow field characteristics of the reverse plasma synthetic jet under hypersonic conditions, experimental and numerical studies were carried out. In the hypersonic incoming flow with Mach number 8, the flow field variation of the reverse plasma synthetic jet was analyzed by comparing the schlieren and exciter outlet pressure monitoring results in the experiment and simulation. It is verified that under hypersonic conditions, the outlet pressure oscillation of the reverse plasma synthesis jet actuator is caused by multiple jets generated by multiple backfilling in the cavity, causing multiple shocks to sweep over the actuator outlet. The plasma synthesis jet increases the mass flow of the gas outside the jet area, while the precursor shock propagating upstream merges with the bow shock wave into a single shock. The vortex rings produced under the action of high-momentum jets, the low-pressure regions created by counter-currents, and the high-temperature low-density plasma jets reduce the local Mach number, resulting in an increase in the shock penetration depth.

参考文献

1 罗振兵, 夏智勋, 王林. 高超声速飞行器内外流主动流动控制[M]. 北京: 科学出版社, 2019: 3-38.
  LUO Z B, XIA Z X, WANG L. Hypersonic aircraft internal and external flow active flow control [M]. Beijing: Science Press, 2019: 3-38 (in Chinese).
2 周岩. 新型等离子体合成射流及其激波控制特性研究[D]. 长沙: 国防科技大学, 2018: 1-9.
  ZHOU Y. Novel plasma synthetic jet and its application in shock wave control[D]. Changsha: National University of Defense Technology, 2018: 1-9 (in Chinese).
3 王林. 等离子体高能合成射流及其超声速流动控制机理研究[D]. 长沙: 国防科学技术大学, 2014: 1-21.
  WANG L. Principle of plasma high-energy synthetic jet and supersonic flow control[D]. Changsha: National University of Defense Technology, 2014: 1-21 (in Chinese).
4 AHMED M Y M, QIN N. Recent advances in the aerothermodynamics of spiked hypersonic vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6): 425-449.
5 HUANG W, CHEN Z, YAN L, et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: A review[J]. Progress in Aerospace Sciences, 2019, 105: 31-39.
6 KNIGHT D. Survey of aerodynamic drag reduction at high speed by energy deposition[J]. Journal of Propulsion and Power, 2008, 24(6): 1153-1167.
7 HONG Y J, WANG D K, LI Q, et al. Interaction of single-pulse laser energy with bow shock in hypersonic flow[J]. Chinese Journal of Aeronautics, 2014, 27(2): 241-247.
8 VENKATACHARI B S, ITO Y, CHENG G, et al. Numerical investigation of the interaction of counterflowing jets and supersonic capsule flows[C]∥42nd AIAA Thermophysics Conference. Reston: AIAA, 2011.
9 GUO J H, LIN G P, BU X Q, et al. Sensitivity analysis of flowfield modeling parameters upon the flow structure and aerodynamics of an opposing jet over a hypersonic blunt body[J]. Chinese Journal of Aeronautics, 2020, 33(1): 161-175.
10 FINLEY P J. The flow of a jet from a body opposing a supersonic free stream[J]. Journal of Fluid Mechanics, 1966, 26(2): 337-368.
11 CHEN L W, WANG G L, LU X Y. Numerical investigation of a jet from a blunt body opposing a supersonic flow[J]. Journal of Fluid Mechanics, 2011, 684: 85-110.
12 SHARMA K, NAIR M T. Combination of counterflow jet and cavity for heat flux and drag reduction[J]. Physics of Fluids, 2020, 32(5): 056107.
13 LU H B, LIU W Q. Investigation of thermal protection system by forward-facing cavity and opposing jet combinatorial configuration[J]. Chinese Journal of Aeronautics, 2013, 26(2): 287-293.
14 MARLEY C D, RIGGINS D W. Numerical study of novel drag reduction techniques for hypersonic blunt bodies[J]. AIAA Journal, 2011, 49(9): 1871-1882.
15 JU S J, SUN Z X, YANG G W, et al. Parametric study on drag reduction with the combination of the upstream energy deposition and the opposing jet configuration in supersonic flows[J]. Acta Astronautica, 2020, 171: 300-310.
16 何琨, 陈坚强, 董维中. 逆向喷流流场模态分析及减阻特性研究[J]. 力学学报, 2006, 38(4): 438-445.
  HE K, CHEN J Q, DONG W Z. Penetration mode and drag reduction research in hypersonic flows using a counter-flow jet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4): 438-445 (in Chinese).
17 MENG X S, HU H Y, LI C, et al. Mechanism study of coupled aerodynamic and thermal effects using plasma actuation for anti-icing[J]. Physics of Fluids, 2019, 31(3): 037103.
18 毛枚良, 邓小刚, 陈亮中, 等. 常气压辉光放电等离子体对边界层流动的影响[J]. 计算物理, 2009, 26(1): 57-63.
  MAO M L, DENG X G, CHEN L Z, et al. Boundary layer flows with one atmosphere uniform glow discharge plasma[J]. Chinese Journal of Computational Physics, 2009, 26(1): 57-63 (in Chinese).
19 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405.
  WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405 (in Chinese).
20 张攀峰, 王晋军, 冯立好. 零质量射流技术及其应用研究进展[J]. 中国科学(E辑: 技术科学), 2008, 38(3): 321-349.
  ZHANG P F, WANG J J, FENG L H. Research progress of zero-mass jet technology and its application [J]. Science in China (Series E: Technological Sciences), 2008, 38(3): 321-349 (in Chinese).
21 王林, 罗振兵, 夏智勋, 等. 高速流场主动流动控制激励器研究进展[J]. 中国科学: 技术科学, 2012, 42(10): 1103-1119.
  WANG L, LUO Z B, XIA Z X, et al. Review of actuators for high speed active flow control [J]. Scientia Sinica (Technologica), 2012, 42(10): 1103-1119 (in Chinese).
22 GROSSMAN K R, CYBYK B Z, VANWIE D M. SparkJet actuators for flow control[C]∥41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
23 HARDY P, BARRICAU P, CARUANA D, et al. Plasma synthetic jet for flow control[C]∥ 40th Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2010.
24 ZONG H H, Formation KOTSONIS M., evolution and scaling of plasma synthetic jets[J]. Journal of Fluid Mechanics, 2018, 837: 147-181.
25 单勇, 张靖周, 谭晓茗. 火花型合成射流激励器流动特性及其激励参数数值研究[J]. 航空动力学报, 2011, 26(3): 551-557.
  SHAN Y, ZHANG J Z, TAN X M. Numerical study of the flow characteristics and excitation parameters for the sparkjet actuator[J]. Journal of Aerospace Power, 2011, 26(3): 551-557 (in Chinese).
26 CHEDEVERGNE F, LéON O, BODOC V, et al. Experimental and numerical response of a high-Reynolds-number M=0.6 jet to a Plasma Synthetic Jet actuator[J]. International Journal of Heat and Fluid Flow, 2015, 56: 1-15.
27 NARAYANASWAMY V, RAJA L L, CLEMENS N T. Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control[J]. AIAA Journal, 2010, 48(2): 297-305.
28 JIN D, LI Y H, JIA M, et al. Experimental characterization of the plasma synthetic jet actuator[J]. Plasma Science and Technology, 2013, 15(10): 1034-1040.
29 陈加政, 胡国暾, 樊国超, 等. 等离子体合成射流对钝头激波的控制与减阻[J]. 航空学报, 2021, 42(7): 124773.
  CHEN J Z, HU G T, FAN G C, et al. Bow shock wave control and drag reduction by plasma synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124773 (in Chinese).
30 WANG H Y, LI J, JIN D, et al. High-frequency counter-flow plasma synthetic jet actuator and its application in suppression of supersonic flow separation[J]. Acta Astronautica, 2018, 142: 45-56.
31 XIE W, LUO Z B, ZHOU Y, et al. Experimental and numerical investigation on opposing plasma synthetic jet for drag reduction[J]. Chinese Journal of Aeronautics, 2022, 35(8): 75-91.
32 瞿章华, 曾明, 刘伟, 等. 高超声速空气动力学[M]. 长沙: 国防科技大学出版社, 1999.
  QU Z H, ZENG M, LIU W, et al. Hypersonic aerodynamics [M]. Changsha: National University of Defense Technology Press, 1999 (in Chinese).
33 XIE W, LUO Z B, HOU L, et al. Characterization of plasma synthetic jet actuator with Laval-shaped exit and application to drag reduction in supersonic flow[J]. Physics of Fluids, 2021, 33(9): 096104.
文章导航

/