流体力学与飞行力学

物理化学模型对流场电磁散射特性的影响

  • 陈伟芳 ,
  • 孙精华 ,
  • 田得阳 ,
  • 陈烨斯
展开
  • 1.浙江大学 航空航天学院,杭州 310027
    2.中国运载火箭技术研究院 空间物理重点实验室,北京 100076
    3.中国空气动力研究与发展中心 超高速空气动力研究所,绵阳 621000
.E-mail: 562778845@qq.com

收稿日期: 2022-06-30

  修回日期: 2022-07-27

  录用日期: 2022-08-22

  网络出版日期: 2022-09-13

基金资助

国家自然科学基金(U20B2007)

Influence of physical and chemical models on electromagnetic scattering characteristics of flow field

  • Weifang CHEN ,
  • Jinghua SUN ,
  • Deyang TIAN ,
  • Yesi CHEN
Expand
  • 1.School of Aeronautics and Astronautics,Zhejiang University,Hangzhou 310027,China
    2.Science and Technology on Space Physics Laboratory,China Academy of Launch Vehicle Technology,Beijing 100076,China
    3.Hypervelocity Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China
E-mail: 562778845@qq.com

Received date: 2022-06-30

  Revised date: 2022-07-27

  Accepted date: 2022-08-22

  Online published: 2022-09-13

Supported by

National Natural Science Foundation of China(U20B2007)

摘要

基于由不同化学反应动力学模型和湍流模型计算得到的高超声速等离子体流场数据,采用三维时变等离子体分段线性电流密度递归卷积时域有限差分(PLJERC-FDTD)方法探索了电磁波与典型高超声速飞行器等离子体流场的相互作用规律,对比分析了不同化学反应动力学模型、不同湍流模型及不同电磁波频率等情况下高超声速飞行器等离子体流场电磁散射特性。对于不同的化学反应动力学模型,Park模型和Gupta模型计算得到的等离子体流场的后向雷达散射截面积(RCS)较为接近,且均小于D&K模型计算得到的,而考虑湍流效应的电磁散射特性比层流流场更为复杂,其后向RCS随频率变化更加剧烈,且随着高度增加,湍流效应对电磁散射特性的影响逐渐减弱。

本文引用格式

陈伟芳 , 孙精华 , 田得阳 , 陈烨斯 . 物理化学模型对流场电磁散射特性的影响[J]. 航空学报, 2023 , 44(12) : 127707 -127707 . DOI: 10.7527/S1000-6893.2022.27707

Abstract

Based on the hypersonic plasma flow field data calculated by different chemical reaction kinetics models and turbulence models, a 3D time-varying Piecewise Linear JE Recursive Convolution Finite-Difference Time-Domain (PLJERC-FDTD) method is applied to explore the interaction between electromagnetic wave and plasma flow field of a typical hypersonic vehicle. The electromagnetic scattering characteristics of hypersonic vehicle plasma flow field under different chemical reaction dynamics models, different turbulence models and different electromagnetic wave frequencies were compared and analyzed. For different chemical reaction dynamic models, the backward Radar Cross-Section (RCS) of plasma flow field calculated by Park model and Gupta model are close to each other, and are both smaller than the backward RCS of plasma flow field calculated by D&K model. The electromagnetic scattering characteristics considering turbulence effects are more complex than those of laminar flow field. The backward RCS fluctuates more sharply along with frequency varying, and the influence of turbulence effect on electromagnetic scattering gradually decreases with the increase of altitude.

参考文献

1 STARKEY R, LEWIS R, JONES C. Plasma telemetry in hypersonic flight[C]∥International Telemetering Conference, 2002: 2-15.
2 HARTUNIAN R, STEWART G, FERGASON S,et al. Causes and mitigation of Radio Frequency (RF) blackout during reentry of reusable launch vehicles: ATR-2007(5309)-1[R]. El Segundo: Aerospace Corporation, 2007.
3 RUSCH W, YEH C. Scattering by an infinite cylinder coated with an inhomogeneous and anisotropic plasma sheath[J]. IEEE Transactions on Antennas and Propagation196715(3): 452-457.
4 SWIFT C T, BECK F B, THOMSON J, et al. RAM C-Ⅲ S-band diagnostic experiment: N71-21101[R]. Washington, D.C.: NASA, 1971.
5 LAROUSSI M, ROTH J R. Numerical calculation of the reflection, absorption, and transmission of microwaves by a nonuniform plasma slab[J]. IEEE Transactions on Plasma Science199321(4): 366-372.
6 USUI H, MATSUMOTO H, YAMASHITA F, et al. Computer experiments on radio blackout of a reentry vehicle[C]∥6th Spacecraft Charging Technology, 1998: 107-110.
7 LUEBBERS R, STEICH D, KUNZ K. FDTD calculation of scattering from frequency-dependent materials[J]. IEEE Transactions on Antennas and Propagation199341(9): 1249-1257.
8 SOTNIKOV V I, PARASCHIV I, MAKHIN V, et al. Linear analysis of sheared flow stabilization of global magnetohydrodynamic instabilities based on the Hall fluid model[J]. Physics of Plasmas20029(3): 913-922.
9 SCHULER K, BECKER D, WIESBECK W. Extraction of virtual scattering centers of vehicles by ray-tracing simulations[J]. IEEE Transactions on Antennas and Propagation200856(11): 3543-3551.
10 于哲峰, 刘佳琪, 刘连元, 等. 临近空间高超声速飞行器RCS特性研究[J]. 宇航学报201435(6): 713-719.
  YU Z F, LIU J Q, LIU L Y, et al. Research on the RCS characteristics of hypersonic near space vehicle[J]. Journal of Astronautics201435(6): 713-719 (in Chinese).
11 于哲峰, 梁世昌, 部绍清, 等. 超高速目标及其绕流场雷达散射模拟与分析[J]. 电波科学学报201328(6): 1076-1081.
  YU Z F, LIANG S C, BU S Q, et al. Simulation and analysis on the radar scattering of hypervelocity object and its flow field[J]. Chinese Journal of Radio Science201328(6): 1076-1081 (in Chinese).
12 于哲峰, 孙良奎, 马平, 等. 气动电磁学概念探讨及若干研究进展介绍[J]. 空气动力学学报201836(5): 729-735.
  YU Z F, SUN L K, MA P, et al. Discussion about the concept of aero-electromagnetics and introduction of typical research progress[J]. Acta Aerodynamica Sinica201836(5): 729-735 (in Chinese).
13 马平, 石安华, 杨益兼, 等. 高超声速球模型及流场光辐射和电磁散射特性测量[J]. 兵工学报201738(6): 1223-1230.
  MA P, SHI A H, YANG Y J, et al. Measurement of ray radiation and electromagnetic scattering from hypersonic sphere models and their flow fields in ballistic range[J]. Acta Armamentarii201738(6): 1223-1230 (in Chinese).
14 马平, 石安华, 杨益兼, 等. 高速模型尾迹流场及其电磁散射特性相似性实验研究[J]. 物理学报201766(10): 102401.
  MA P, SHI A H, YANG Y J, et al. Experiment on similarity between wake flow field and electromagnetic scattering characteristic of the hypersonic model[J]. Acta Physica Sinica201766(10): 102401 (in Chinese).
15 马平, 韩一平, 张宁, 等. 高超声速类HTV2模型全目标电磁散射特性实验研究[J]. 物理学报202271(8): 084101.
  MA P, HAN Y P, ZHANG N, et al. Experimental investigation on all-target electromagnetic scattering characteristics of hypervelocity HTV2-like flight model[J]. Acta Physica Sinica202271(8): 084101 (in Chinese).
16 吴明兴, 田得阳, 唐璞, 等. 高超声速模型尾迹电子密度二维分布反演方法[J]. 物理学报202271(11): 115202.
  WU M X, TIAN D Y, TANG P, et al. Inversion method of two-dimensional distribution of electron density in hypersonic model wake[J]. Acta Physica Sinica202271(11): 115202 (in Chinese).
17 聂亮, 陈伟芳, 夏陈超, 等. 高超声速飞行器绕流流场电磁散射特性分析[J]. 电波科学学报201429(5): 874-879, 956.
  NIE L, CHEN W F, XIA C C, et al. Analysis of scattering for the flow field of a hypersonic flight vehicle[J]. Chinese Journal of Radio Science201429(5): 874-879, 956 (in Chinese).
18 莫锦军. 隐身目标低频宽带电磁散射特性研究[D]. 长沙: 国防科技大学, 2004: 70-134.
  MO J J. Study on wideband electromagnetic characteristics of stealth targets in low frequency[D]. Changsha: National University of Defense Technology, 2004: 70-134 (in Chinese).
19 周超, 张小宽, 张晨新, 等. 再入段等离子体对弹头RCS的影响研究[J]. 现代雷达201436(3): 83-86.
  ZHOU C, ZHANG X K, ZHANG C X, et al. A study on the influence on warhead RCS of plasma parameters in the reentry phase[J]. Modern Radar201436(3): 83-86 (in Chinese).
20 梁世昌, 于哲峰, 张志成, 等. 开槽钝锥体及等离子体鞘套的RCS特性研究[J]. 实验流体力学201327(2): 19-23.
  LIANG S C, YU Z F, ZHANG Z C, et al. Research on the RCS characteristics of blunt-cone with slots and plasma sheath[J]. Journal of Experiments in Fluid Mechanics201327(2): 19-23 (in Chinese).
21 孟贵平. 再入体的电磁散射特性分析及算法研究[D]. 南京: 南京大学, 2019: 22-58.
  MENG G P. Re-entry body electromagnetic scattering characteristics analysis and algorithm research[D]. Nanjing: Nanjing University, 2019: 22-58 (in Chinese).
22 赵泽康. 高超声速目标在等离子体湍流中电磁散射特性研究[D]. 西安: 西安电子科技大学, 2020: 43-62.
  ZHAO Z K. Electromagnetic scattering characteristics of hypersonic target in plasma turbulence[D]. Xi’an: Xidian University, 2020: 43-62 (in Chinese).
23 牛戈钊, 刘彦明, 高澜, 等 .等离子鞘套包覆钝锥的双站极化散射特性[J].航空学报202243(S2): 727722.
  NIU G Z, LIU Y M, GAO L, et al. Bistatic polarization scattering characteristic of plasma-sheath-covered blunt cone[J]. Acta Aeronautica et Astronautica Sinica202243(S2): 727722 (in Chinese).
24 YEE K E. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation196614(3): 302-307.
25 杨阳. 电磁场时域有限差分数值方法的研究[D]. 南京: 南京理工大学, 2005: 1-2.
  YANG Y. The research on the finite difference time domain methods in the electromagnetic fields[D]. Nanjing: Nanjing University of Science and Technology, 2005: 1-2 (in Chinese).
26 常雨. 超声速/高超声速等离子体流场数值模拟及其电磁特性研究[D]. 长沙: 国防科技大学, 2009: 74-93.
  CHANG Y. Numerical simulation of supersonic/hypersonic plasma flow field and electromagnetic characteristics[D]. Changsha: National University of Defense Technology, 2009: 74-93 (in Chinese).
27 YANG L X. 3D FDTD implementation for scattering of electric anisotropic dispersive medium using recursive convolution method[J]. International Journal of Infrared and Millimeter Waves200728(7): 557-565.
文章导航

/