论文

不确定强耦合下四旋翼姿态鲁棒自适应控制

  • 刘晨阳 ,
  • 吴大伟 ,
  • 郭一泽 ,
  • 吕欣赛 ,
  • 周佳妮 ,
  • 邵书义
展开
  • 1.河海大学 能源与电气学院,南京  211100
    2.南京航空航天大学 自动化学院,南京  211106
.E-mail: wudaweiwkl@126.com

收稿日期: 2022-06-17

  修回日期: 2022-07-28

  录用日期: 2022-08-26

  网络出版日期: 2022-09-13

基金资助

国家自然科学基金(62103135);中央高校基本科研业务费专项资金(B210202068)

Robust adaptive attitude control of quadrotor with uncertain strong coupling

  • Chenyang LIU ,
  • Dawei WU ,
  • Yize GUO ,
  • Xinsai LV ,
  • Jiani ZHOU ,
  • Shuyi SHAO
Expand
  • 1.School of Energy and Electrical Engineering,Hohai University,Nanjing  211100,China
    2.College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing  211106,China
E-mail: wudaweiwkl@126.com

Received date: 2022-06-17

  Revised date: 2022-07-28

  Accepted date: 2022-08-26

  Online published: 2022-09-13

Supported by

National Natural Science Foundation of China(62103135);Fundamental Research Funds for the Central Universities(B210202068)

摘要

针对多源不确定强耦合下的四旋翼无人机姿态控制问题,首次设计了一种多层逼近自适应神经网络动态面控制算法。区别于以往的加性耦合不确定研究,考虑无人机飞行控制中的乘性耦合多源不确定估计与补偿问题。首先,构建不确定四旋翼无人机姿态动力学模型,并基于神经网络与傅里叶展开实现乘性耦合不确定的巧妙转换;其次,将自适应技术与反步法相结合,设计多层逼近自适应控制律;同时将动态面技术用于解决反步法中虚拟控制律求导问题。完整理论分析与仿真实验表明了所述控制策略的有效性。

本文引用格式

刘晨阳 , 吴大伟 , 郭一泽 , 吕欣赛 , 周佳妮 , 邵书义 . 不确定强耦合下四旋翼姿态鲁棒自适应控制[J]. 航空学报, 2023 , 44(S1) : 727645 -727645 . DOI: 10.7527/S1000-6893.2022.27645

Abstract

A dynamic surface control algorithm based on multi-layer adaptive neural network is proposed for the attitude control problem of the quadrotor UAV with multi-source strong coupling uncertainties for the first time. Different from the previous research on additive coupling uncertainties, the problem of multi-source multiplicative uncertainties estimation and compensation in UAV flight control is considered. First of all, a four-rotor UAV attitude dynamics model with multiplicative strong coupling uncertainties is constructed, and the uncertainties are ingeniously converted based on neural network and Fourier expansion. Secondly, a multi-layer approximation adaptive control law is designed based on the combination of adaptive technology and backstepping method. At the same time, dynamic surface technology is used to solve the derivation problem of virtual control law in the backstepping method. The effectiveness of the proposed control strategy is proved through complete theoretical analysis and simulation experiments.

参考文献

1 王晓银, 张旭, 李稼祥. 四旋翼无人机控制系统设计[J]. 微型电脑应用202238(1): 20-22.
  WANG X Y, ZHANG X, LI J X. Design of four-rotor UAV control system[J]. Microcomputer Applications202238(1): 20-22 (in Chinese).
2 刚桂虎, 赵显. 小型旋翼无人机在未来城市军事行动应用中潜力评估[J]. 国防科技201738(2): 33-37.
  GANG G H, ZHAO X. Evaluation on potential of small rotor UAV in future urban military operation[J]. National Defense Technology201738(2): 33-37 (in Chinese).
3 梁璐莉, 吕文红, 葛家丽, 等. 无人机物流发展综述[J]. 物流技术201837(12): 41-45.
  LIANG L L, LV W H, GE J L, et al. Overview of development of UAV logistics[J]. Logistics Technology201837(12): 41-45 (in Chinese).
4 王振华, 黄宵宁, 梁焜, 等. 基于四旋翼无人机的输电线路巡检系统研究[J]. 中国电力201245(10): 59-62.
  WANG Z H, HUANG X N, LIANG K, et al. Study on the transmission line inspection system based on quadrotor UAVs[J]. Electric Power201245(10): 59-62 (in Chinese).
5 王培, 李杨, 崔根, 等. 多旋翼无人机: 新设计、新应用及新发展[J]. 人工智能2021(4): 78-91.
  WANG P, LI Y, CUI G, et al. Multi-rotor UAVs: new designs, applications and developments[J]. AI-View2021(4): 78-91 (in Chinese).
6 甄红涛, 齐晓慧, 夏明旗, 等. 四旋翼无人机鲁棒自适应姿态控制[J]. 控制工程201320(5): 915-919.
  ZHEN H T, QI X H, XIA M Q, et al. Quadrotor UAV robust adaptive attitude control[J]. Control Engineering of China201320(5): 915-919 (in Chinese).
7 王成, 杨杰, 姚辉, 等. 四旋翼无人机飞行控制算法综述[J]. 电光与控制201825(12): 53-58.
  WANG C, YANG J, YAO H, et al. An overview of flight control algorithms for quadrotors[J]. Electronics Optics and Control201825(12): 53-58 (in Chinese).
8 高晗, 颜世成. 高海拔环境下四旋翼无人机飞行姿态控制技术研究[J]. 电子设计工程202129(15): 17-20, 26.
  GAO H, YAN S C. Research on flight attitude control technology of quadrotor UAV in high altitude environment[J]. Electronic Design Engineering202129(15): 17-20, 26 (in Chinese).
9 汪震东, 张艳. 四旋翼无人机预测-PID复合控制研究[J]. 控制工程202128(7): 1390-1397.
  WANG Z D, ZHANG Y. Research on prediction-PID compound control of quadrotor UAV[J]. Control Engineering of China202128(7): 1390-1397 (in Chinese).
10 陈炜峰, 朱海飞, 王伟, 等. 基于线性二次高斯的四旋翼飞行器姿态控制[J]. 控制工程201421(1): 120-124.
  CHEN W F, ZHU H F, WANG W, et al. Attitude control for quad-rotor based on LQG[J]. Control Engineering of China201421(1): 120-124 (in Chinese).
11 ABHIJIT D, FRANK L, KAMESH S. Backstepping approach for controlling a quadrotor using Lagrange form dynamics[J]. Journal of Intelligent and Robotic Systems200956(1-2): 127-151.
12 沈昕格, 金海, 郭亮. 基于反步法的四旋翼无人机自适应控制研究[J]. 电子科技202235(3): 32-37.
  SHEN X G, JIN H, GUO L. Research on adaptive backstepping control of quadrotor UAV[J]. Electronic Science and Technology202235(3): 32-37 (in Chinese).
13 韩业壮, 华容. 四旋翼飞行器的RBF网络自适应滑模控制[J]. 电光与控制201724(11): 22-27.
  HAN Y Z, HUA R. RBF neural network adaptive sliding mode control for quad-rotor aerial vehicle[J]. Electronics Optics & Control201724(11): 22-27 (in Chinese).
14 王雪娆, 孙长银, 林晓波, 等. 基于神经网络的无人机姿态自适应控制仿真[J]. 计算机仿真202037(3): 37-41, 88.
  WANG X R, SUN C Y, LIN X B, et al. Simulation study on adaptive attitude control for a quadrotor based on neural network[J]. Computer Simulation202037(3): 37-41, 88 (in Chinese).
15 刘慧博, 彭亮, 赵旭. 四旋翼飞行器姿态控制方法研究[J]. 自动化应用2020(12): 4-7.
  LIU H B, PENG L, ZHAO X. Research on attitude control methods of quadrotor aircraft[J]. Automation Application2020(12): 4-7 (in Chinese).
16 石嘉, 裴忠才, 唐志勇, 等. 改进型自抗扰四旋翼无人机控制系统设计与实现[J]. 北京航空航天大学学报202147(9): 1823-1831.
  SHI J, PEI Z C, TANG Z Y, et al. Design and realization of an improved active disturbance rejection quadrotor UAV control system[J]. Journal of Beijing University of Aeronautics and Astronautics202147(9): 1823-1831 (in Chinese).
17 甄红涛, 齐晓慧, 李杰, 等. 四旋翼无人机L1自适应块控反步姿态控制器设计[J]. 控制与决策201429(6): 1076-1082.
  ZHEN H T, QI X H, LI J, et al. Quadrotor UAV L1 adaptive block backstepping attitude controller[J]. Control and Decision201429(6): 1076-1082 (in Chinese).
18 刘荣华, 刘树光, 王欢, 等. 无人机动态面自适应容错路径跟踪控制[J]. 飞行力学202139(5): 49-55.
  LIU R H, LIU S G, WANG H, et al. Fault tolerant path following control of UAV based on adaptive dynamic surface control[J]. Flight Dynamics202139(5): 49-55 (in Chinese).
19 赵红超, 赵建忠. 基于滑模干扰观测器的无人机编队动态面控制[J]. 飞行力学202139(4): 45-51.
  ZHAO H C, ZHAO J Z. Dynamic surface control of UAV formation based on sliding mode disturbance observer[J]. Flight Dynamics202139(4): 45-51 (in Chinese).
20 方旭, 刘金琨. 四旋翼无人机动态面控制[J]. 北京航空航天大学学报201642(8): 1777-1784.
  FANG X, QIAN J K. Dynamic surface control for quadrotor unmanned air vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics201642(8): 1777-1784 (in Chinese).
21 张勇, 陈增强, 张兴会, 等. 基于自抗扰的四旋翼无人机动态面姿态控制[J]. 吉林大学学报(工学版)201949(2): 562-569.
  ZHANG Y, CHEN Z Q, ZHANG X H, et al. Dynamic surface attitude control of quad-rotor UAV based on ADRC[J]. Journal of Jilin University (Engineering and Technology Edition)201949(2): 562-569 (in Chinese).
22 赵振华, 肖亮, 姜斌, 等. 基于扩张状态观测器的四旋翼无人机快速非奇异终端滑模轨迹跟踪控制[J]. 控制与决策202237(9): 2201-2210.
  ZHAO Z H, XIAO L, JIANG B, et al. Fast nonsingular terminal sliding mode trajectory tracking control of a quadrotor UAV based on extended state observers [J]. Control and Decision202237(9): 2201-2210 (in Chinese).
23 赵振华, 肖亮, 曹东, 等. 基于滑模观测器的四旋翼无人机全回路解耦控制[J]. 南京理工大学学报202145(3): 1005-9830.
  ZHAO Z H, XIAO L, CAO D, et al. Full loop decoupling control based on sliding mode observers for quadrotor UAV [J]. Journal of Nanjing University of Science and Technology202145(3): 1005-9830 (in Chinese).
24 甘顺顺, 许宝杰, 黄小龙. 基于RBF神经网络的四旋翼无人机姿态控制[J]. 装备制造技术2021(8): 28-35.
  GAN S S, XU B J, HUANG X L. Quadrotor UAV attitude control based on RBF neural network[J]. Equipment Manufacturing Technology2021(8): 28-35 (in Chinese).
25 SESHAGIRI S, KHALIL H K. Output feedback control of nonlinear systems using RBF neural networks[J]. IEEE Transactions on Neural Networks200011(1): 69-79.
26 孙瑶洁, 熊智, 李文龙, 等. 基于RBF神经网络的相对导航信息融合方法[J]. 航空计算技术201949(6): 27-32.
  SUN Y J, XIONG Z, LI W L, et al. Relative navigation information fusion method based on RBF neural network[J]. Aeronautical Computing Technique201949(6): 27-32 (in Chinese).
27 唐志勇, 马福源, 裴忠才. 四旋翼的改进PSO-RBF神经网络自适应滑模控制[J/OL]. 北京航空航天大学学报, (2021-12-16) [2022-07-01]..
  TANG Z Y, MA F Y, PEI Z C. Improved PSO-RBF neural network adaptive sliding mode control for quadrotor system[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, (2021-12-16) [2022-07-01]. .
28 魏青铜, 陈谋, 吴庆宪. 输入饱和与姿态受限的四旋翼无人机反步姿态控制[J]. 控制理论与应用201532(10): 1361-1369.
  WEI Q T, CHEN M, WU Q X. Backstepping-based attitude control for a quadrotor UAV with input saturation and attitude constraints[J]. Control Theory & Applications201532(10): 1361-1369 (in Chinese).
29 张曙光. 基于神经网络的四旋翼无人机姿态跟踪控制[D]. 哈尔滨: 哈尔滨工业大学, 2018: 10-13.
  ZHANG S G. Attitude control of quadrotor UAV based on neural network[D]. Harbin: Harbin Institute of Technology, 2018: 10-13 (in Chinese).
30 CHEN M, XIONG S, WU Q. Tracking flight control of quadrotor based on disturbance observer[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems202151(3): 1414-1423.
31 CHEN M, TAO G, JIANG B. Dynamic surface control using neural networks for a class of uncertain nonlinear systems with input saturation[J]. IEEE Transactions on Neural Networks and Learning Systems201526(9): 2086-2097.
32 刘锡良, 周颖. 风荷载的几种模拟方法[J]. 工业建筑200535(5): 4.
  LIU X L, ZHOU Y. Numerical simulation methods of wind load [J]. Industrial Construction200535(5): 4 (in Chinese).
33 JOERN R, JANOSCH N, THOMAS S, et al. Extending kalibr: calibrating the extrinsics of multiple IMUs and of individual axes[C]∥2016 IEEE International Conference on Robotics and Automation (ICRA), 2016: 4304-4311
34 王芳, 高雅丽, 张政, 等.输出误差约束下四旋翼无人机预定性能反步控制[J]. 控制与决策202136(5): 1059-1068.
  WANG F, GAO Y L, ZHANG Z, et al. Prescribed performance backstepping control for quadrotor UAV with output error constraint[J]. Control and Decision202136(5): 1059-1068 (in Chinese).
文章导航

/