高超声速气动热标模HyHERM-Ⅰ试验
收稿日期: 2022-07-13
修回日期: 2022-07-27
录用日期: 2022-08-22
网络出版日期: 2022-08-31
基金资助
国家数值风洞工程;国家自然科学基金(11902338)
Hypersonic aero-heating environment research model HyHERM-I: Experiment
Received date: 2022-07-13
Revised date: 2022-07-27
Accepted date: 2022-08-22
Online published: 2022-08-31
Supported by
National Numerical Wind Tunnel Project;National Natural Science Foundation of China(11902338)
为满足高超声速飞行器气动热环境预测与评估技术发展需要,开展了以地面试验数据为基础的高超声速气动热标模研制工作。标模试验涵盖了不同马赫数Ma(6,8,10,12)、雷诺数Re、总温T0、前缘半径、攻角等,在Ma、Re模拟基础上,进行T0模拟,并详细分析了流场参数的不确定度,Ma、Re、T0、总压P0不确定度分别优于±1%、±10%、±6%、 ±3%。设计了表征二维流动的“平板-双楔”气动热标模HyHERM-I,采用薄膜热电阻、热电偶传感器测量模型表面热流及边界流态,并结合高速纹影分析了分离区流动特点。试验结果表明:驻点热流重复性测量精度优于±5%。尖前缘、大压缩角下拐角分离区增大。尖前缘、高雷诺数、低马赫数状态下边界层流动更易转捩并发展为湍流,同时转捩和湍流可在一定程度上抑制流动分离并减小分离区。HyHERM-I气动热标模试验数据丰富、详实,可为数值方法验证与确认、试验技术验证、天地相关性分析以及高超声速飞行器设计等提供参考。
关键词: 高超声速气动热标模(HyHERM); 激波风洞; 热流; 边界层; 流动分离
胡守超 , 庄宇 , 李贤 , 江涛 . 高超声速气动热标模HyHERM-Ⅰ试验[J]. 航空学报, 2022 , 43(S2) : 233 -248 . DOI: 10.7527/S1000-6893.2022.27804
The ground test study on hypersonic aero-heating standard model has been carried out, so as to meet the needs of the development of hypersonic aero-heating environment prediction and evaluation. The test covers different Mach number (6, 8, 10, 12), Reynolds number, total temperature, leading edge radius, and angle of attack. The uncertainty of flow field parameters is analyzed in detail. The uncertainty of Ma, Re, T0 and P0 is better than ±1%, ±10%, ±6%, ±3% respectively. A "plate-double wedge" test model HyHERM-I is designed, which characterize the two-dimensional hypersonic flow. The heat flux and boundary layer flow state is measured by thin film gauge or thermocouple, and the flow characteristics of the separation zone are analyzed with high-speed schlieren. The test results show that, the repeatability measurement accuracy of stagnation-point heat flux is better than ±5%. Smaller leading edge radius and larger compression angle results in a larger separation zone. The boundary layer flow is more likely to transition and develop into turbulence while smaller leading edge radius, larger Reynolds number, low Mach number. Besides, the flow separation is restrained by the transition and turbulence flow. The test data of HyHERM-I can be used as a reference for numerical verification and validation, testing technology validation, correlation study between flight and ground test, as well as for hypersonic vehicle design.
1 | 战培国, 罗月培. 飞行器风洞试验标模体系研究初探[J]. 标准科学, 2011(11): 28-31. |
ZHAN P G, LUO Y P. Primary research on the standard system of air vehicle calibration models used in wind tunnel test[J]. Standard Science, 2011(11): 28-31 (in Chinese). | |
2 | OBERKAMPF W L, SINDIR M N, CONLISK A T. AIAA guide for the verification and validation of computational fluid dynamics simulations[M]. Reston: AIAA, 1998. |
3 | 邓小刚, 宗文刚, 张来平, 等. 计算流体力学中的验证与确认[J]. 力学进展, 2007, 37(2): 279-288. |
DENG X G, ZONG W G, ZHANG L P, et al. Verification and validation in computational fluid dynamics[J]. Advances in Mechanics, 2007, 37(2): 279-288 (in Chinese). | |
4 | 赵炜, 陈江涛, 肖维, 等. 国家数值风洞(NNW)验证与确认系统关键技术研究进展[J]. 空气动力学学报, 2020, 38(6): 1165-1172. |
ZHAO W, CHEN J T, XIAO W, et al. Advances in the key technologies of verification and validation system of National Numerical Windtunnel project[J]. Acta Aerodynamica Sinica, 2020, 38(6): 1165-1172 (in Chinese). | |
5 | 袁先旭, 何琨, 陈坚强, 等. MF-1模型飞行试验转捩结果初步分析[J]. 空气动力学学报, 2018, 36(2): 286-293. |
YUAN X X, HE K, CHEN J Q, et al. Preliminary transition research analysis of MF-1[J]. Acta Aerodynamica Sinica, 2018, 36(2): 286-293 (in Chinese). | |
6 | 涂国华, 万兵兵, 陈坚强, 等. MF-1钝锥边界层稳定性及转捩天地相关性研究[J]. 中国科学: 物理学 力学 天文学, 2019, 49(12): 118-128. |
TU G H, WAN B B, CHEN J Q, et al. Investigation on correlation between wind tunnel and flight for boundary layer stability and transition of MF-1 blunt cone[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(12): 118-128 (in Chinese). | |
7 | OPALKA K O. Force tests of the hypersonic ballistic standard models HB-1 and HB-2: AD 649254 [R]. Pairs: AGARD, 1966. |
8 | MATTHEWS R K, TRIMMER L L. Force and pressure tests of an AGARD calibration model B at Mach number of 10: AD 430701 [R]. Pairs: AGARD, 1964. |
9 | HARTZUIKER J P. A review of measurements on AGARD calibration model B in the Mach number range from 1.4 to 8: NLR ReportMp. 200 [R].Pairs: AGARD, 1961. |
10 | COATS J D. Force tests of on AGARD calibration model B at Ma=2.5 to 6.0: AEDC-TN-60-182 [R].Pairs: AGARD, 1960. |
11 | KAYSER L D, FITCHC R. Force and pressure tests of an AGARD calibration model B at a Mach number of 8: AEDC-TN-60-34 [R].Pairs: AGARD, 1960. |
12 | SIMS J L. Tables for supersonic flow round right circular cones at small angle of attack: NASA SP-3007[R].Washington, D.C.: NASA, 1964. |
13 | GATLIN G, RIVERS M, GOODLIFF S, et al. Experimental investigation of the DLR-F6 transport configuration in the national transonic facility (invited)[C]∥ 26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008. |
14 | BURNER A, GOAD W, MASSEY E, et al. Wing deformation measurements of the DLR-F6 transport configuration in the national transonic facility (invited)[C]∥ 26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008. |
15 | RUDNIK R, SITZMANN M, GODARD J L, et al. Experimental investigation of the wing-body juncture flow on the DLR-F6 configuration in the ONERA S2MA facility[C]∥ 27th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2009. |
16 | RIVERS M, HUNTER C, GATLIN G. Support system effects on the DLR-F6 transport configuration in the national transonic facility[C]∥ 27th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2009. |
17 | 总装备部. 高超声速风洞气动力试验方法 [S].北京: 总装备部军标出版发行部, 2002. |
General Armament Department. GJB4399-2002 aerodynamics tests method of hypersonic win tunnel[J]. Beijing: General Armament Department Military Standard Publishing Department, 2002 (in Chinese). | |
18 | 陈坚强, 吴晓军, 张健, 等. FlowStar: 国家数值风洞(NNW)工程非结构通用CFD软件[J]. 航空学报, 2021, 42(9): 625739. |
CHEN J Q, WU X J, ZHANG J, et al. FlowStar: General unstructured-grid CFD software for National Numerical Windtunnel(NNW) project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625739 (in Chinese). | |
19 | 李鹏, 陈坚强, 丁明松, 等. NNW-HyFLOW高超声速流动模拟软件框架设计[J]. 航空学报, 2021, 42(9): 625718. |
LI P, CHEN J Q, DING M S, et al. Framework design of NNW-HyFLOW hypersonic flow simulation software[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625718 (in Chinese). | |
20 | 赵童. 考虑结构重量/变形的超临界机翼气动优化设计[D].北京: 清华大学, 2016: 88-90. |
ZHAO T. Aerodynamic optimization design of supercritical wing based on structure weight/deformation performance[D]. Beijing: Tsinghua University, 2016: 88-90 (in Chinese). | |
21 | 余永刚, 周铸, 黄江涛, 等. 单通道客机气动标模CHN-T1设计[J]. 空气动力学学报, 2018, 36(3): 505-513. |
YU Y G, ZHOU Z, HUANG J T, et al. Aerodynamic design of a standard model CHN-T1 for single-aisle passenger aircraft[J]. Acta Aerodynamica Sinica, 2018, 36(3): 505-513 (in Chinese). | |
22 | 李伟, 王运涛, 洪俊武, 等. 采用TRIP3.0模拟CHN-T1模型气动特性[J]. 空气动力学学报, 2019, 37(2): 272-279. |
LI W, WANG Y T, HONG J W, et al. Aerodynamic characteristics simulation of CHN-T1 model with TRIP3.0[J]. Acta Aerodynamica Sinica, 2019, 37(2): 272-279 (in Chinese). | |
23 | 李强, 刘大伟, 许新, 等. CHN-T1标模2.4米风洞气动特性试验研究[J]. 空气动力学学报, 2019, 37(2): 337-344. |
LI Q, LIU D W, XU X, et al. Experimental study of aerodynamic characterictics of CHN-T1 standard model in 2.4 m transonic wind tunnel[J]. Acta Aerodynamica Sinica, 2019, 37(2): 337-344 (in Chinese). | |
24 | 李浩然, 李亚坤, 张宇飞, 等. CHN-T1标模的数值计算及气动特性研究[J]. 空气动力学学报, 2019, 37(2): 329-336. |
LI H R, LI Y K, ZHANG Y F, et al. Numerical simulation and aerodynamic performance analysis of the standard model CHN-T1[J]. Acta Aerodynamica Sinica, 2019, 37(2): 329-336 (in Chinese). | |
25 | 李强, 万兵兵, 杨凯, 等. 高超声速尖锥边界层压力脉动和热流脉动特性试验[J]. 航空学报, 2022, 43(2): 124956. |
LI Q, WAN B B, YANG K, et al. Experimental research on characteristics of pressure and heat flux fluctuation in hypersonic cone boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 124956 (in Chinese). | |
26 | 陈苏宇, 江涛, 常雨, 等. 高超声速钝头体边界层转捩试验[J]. 航空学报, 2020, 41(12): 124098. |
CHEN S Y, JIANG T, CHANG Y, et al. Hypersonic boundary layer transition over bodies with blunt nosetip[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124098 (in Chinese). | |
27 | 师昆仑, 邱云龙, 陈伟芳, 等. 传感器局部温度差异对压缩拐角热流测量的影响[J]. 航空学报, 2020, 41(12): 124055. |
SHI K L, QIU Y L, CHEN W F, et al. Influence of local temperature difference of sensors on heat flow measurement of compression corner[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124055 (in Chinese). | |
28 | 朱志斌, 尚庆, 沈清. 高超声速边界层转捩模型横流效应修正与应用[J]. 航空学报, 2022, 43(7): 125685. |
ZHU Z B, SHANG Q, SHEN Q. Crossflow modification of transition model for hypersonic boundary layer and its application[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125685 (in Chinese). | |
29 | EAST R A, HUTT G R. Comparison of predictions and experimental data for hypersonic pitching motion stability[J]. Journal of Spacecraft and Rockets, 1988, 25(3): 225-233. |
30 | 陈河梧. 超声速高超声速风洞测力数据衔接性的研究[J]. 空气动力学学报, 2000, 18(3): 345-349. |
CHEN H W. Investigation on the link-up between the aerodynamic force data measured in supersonic and hypersonic wind tunnel[J]. Acta Aerodynamica Sinica, 2000, 18(3): 345-349 (in Chinese). | |
31 | 陈河梧. 高超声速风洞测力数据的关联研究[J]. 流体力学实验与测量, 2002, 16(3): 14-18, 25. |
CHEN H W. Correlation study on data of force-measuring test in hypersonic wind tunnel[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(3): 14-18, 25 (in Chinese). | |
32 | JONES D J. Tables of inviscid supersonic flow about circular cones at incidence, γ=1.4: AD 6987791[R]. Pairs: AGARD, 1979. |
33 | 张婷婷, 叶瑞, 姜维, 等. 高超声速风洞HSCM系列标准模型气动力实验数据[J]. 气体物理, 2021, 6(4): 57-65. |
ZHANG T T, YE R, JIANG W, et al. Aerodynamic test data of HSCM calibration models in hypersonic wind tunnel[J]. Physics of Gases, 2021, 6(4): 57-65 (in Chinese). | |
34 | 李素循. 典型外形高超声速流动特性[M]. 北京: 国防工业出版社, 2007. |
LI S X. Typical hypersonic flow characteristics[M]. Beijing: National Defense Industry Press, 2007 (in Chinese). | |
35 | ZHAO J S, LIU S, ZHAO L, et al. Numerical study of total temperature effect on hypersonic boundary layer transition[J]. Physics of Fluids, 2019, 31(11): 114105. |
36 | 赵金山, 张志刚, 石义雷, 等. 高超声速飞行器气动热关联换算方法研究[J]. 力学学报, 2018, 50(5): 1235-1245. |
ZHAO J S, ZHANG Z G, SHI Y L, et al. Research on the conversion method of aeroheating environment of hypersonic vehicle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1235-1245 (in Chinese). | |
37 | 李强, 江涛, 陈苏宇, 等. 激波风洞边界层转捩测量技术及应用[J]. 航空学报, 2019, 40(8): 122740. |
LI Q, JIANG T, CHEN S Y, et al. Measurement technique and application of boundary layer transition in shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122740 (in Chinese). | |
38 | BUSHNELL D M, WEINSTEIN L M. Correlation of peak heating for reattachment of separated flows[J]. Journal of Spacecraft and Rockets, 1968, 5(9): 1111-1112. |
39 | 时晓天, 吕蒙, 赵渊, 等. 激波/湍流边界层干扰的流动控制技术综述[J]. 航空学报, 2022, 43(1): 625929. |
SHI X T, LYU M, ZHAO Y, et al. Flow control technique for shock wave/turbulent boundary layer interactions[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625929 (in Chinese). | |
40 | 张昊元, 孙东, 邱波, 等. 湍动能在激波/边界层干扰流动中的影响[J]. 航空学报, 2022, 43(7): 125504. |
ZHANG H Y, SUN D, QIU B, et al. Influence of turbulent kinetic energy on shock wave/boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125504 (in Chinese). | |
41 | FAY J A, RIDDELL F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aerospace Sciences, 1958, 25(2): 73-85. |
42 | STOKES G G. Mathematical and physical papers[M].London: Cambridge University Press,1880. |
/
〈 |
|
〉 |