等离子体合成射流激励器高速流场逆向喷流控制
收稿日期: 2022-07-09
修回日期: 2022-07-27
录用日期: 2022-08-16
网络出版日期: 2022-08-31
Reverse jet flow control by plasma synthetic jet actuator in high speed flow field
Received date: 2022-07-09
Revised date: 2022-07-27
Accepted date: 2022-08-16
Online published: 2022-08-31
激波作为伴随高速飞行存在的特殊气动现象,对飞行器的安全与性能发挥具有重要影响。有效的流动控制对改善飞行器的气动力/热环境具有重要意义。等离子体具有结构简单、质量小、频响快、激励带宽大、激励强度可调节、易于布置且无附属控制系统等优点,近年来逐渐受到关注。利用高速纹影和激光动态压力传感器技术,详细研究了等离子体合成射流逆向喷流对弓形脱体激波流动控制非定常过程。研究结果表明:等离子体合成射流具有较强的流动控制作用,控制时间超过600 μs。随着射流压力下降,调控的弓形激波呈现出短模态和长模态变化。2个模态调制过程对模型均有一定程度的减阻效果。
李铮 , 徐聪 , 张健 , 李萌萌 , 马祎蕾 , 白光辉 . 等离子体合成射流激励器高速流场逆向喷流控制[J]. 航空学报, 2022 , 43(S2) : 225 -232 . DOI: 10.7527/S1000-6893.2022.27789
As a special aerodynamic phenomenon accompanying high-speed flight, shock wave has an important impact on the safety and performance of aircraft. Effective flow control has great significance in improving the aerodynamic/thermal environment of aircraft. Plasma has attracted more and more attention in recent years because of its simple structure, small mass, fast frequency response, large excitation bandwidth, adjustable excitation intensity, easy arrangement and no auxiliary control system. In this paper, high speed schlieren and laser dynamic pressure sensor are used to study the unsteady control of bow shock by counter jet of plasma synthetic jet. The results show that plasma synthetic jet has a strong flow control effect, whose control time is more than 600 μs. With the decrease of jet pressure, the controlled bow shock presents short penetration mode and long penetration mode changes. The debugging process of the two modes has a certain degree of drag reduction effect on the model.
1 | COUSTOLS E, COUSTEIX J. Performances of riblets in the supersonic regime[J]. AIAA Journal, 32(2): 431-433. |
2 | SANDRA C, VIVIANA L. Influence of Mach number and static pressure on plasma flow control of supersonic and rarefied flows around a sharp flat plate[J]. Experiments in Fluids, 2017, 58(6):74-74. |
3 | HUANG J, YAO W, SHAN X. Coupled fluid-thermal investigation on non-ablative thermal protection system with spiked body and opposing jet combined configuration[J]. Chinese Journal of Aeronautics, 2019, 32(6):1390-1402. |
4 | JIANG Z L, LIU Y F, HAN G L, et al. Experimental demonstration of a new concept of drag reduction and thermal protection for hypersonic vehicles[J]. Acta Mechanica Sinica, 2009,25(3): 417-419. |
5 | XIE W, LUO Z, ZHOU Y, et al. Experimental and numerical investigation on opposing plasma synthetic jet for drag reduction[J]. Chinese Journal of Aeronautics, 2022, 35 (8):75-91. |
6 | KAMETANI Y, KOTAKE A, FUKAGATA K, et al. Drag reduction capability of uniform blowing in supersonic wall-bounded turbulent flows[J]. Physical Review Fluids, 2017, 2(12): 123904. |
7 | KUMAR R, ALI M Y, ALVI F S, et al. Generation and control of oblique shocks using microjets[J]. AIAA Journal, 2011, 49(12): 2751-2759. |
8 | 吴忧, 徐旭, 陈兵, 等. 高马赫数下横/逆向喷流干扰流场数值研究[J]. 航空学报, 2021, 42(S1): 726359. |
WU Y, XU X, CHEN B, et al. Numerical study on transverse/opposing jet interaction flowfield under high Mach number[J]. Acta Aeronauticaet Astronautica Sinica, 2021, 42(S1): 726359 (in Chinese). | |
9 | 王泽江, 李杰, 曾学军, 等. 逆向喷流对双锥导弹外形减阻特性的影响[J]. 航空学报, 2020, 41(12): 124116. |
WANG Z J, LI J, ZENG X J, et al. Effect of opposing jet on drag reduction characteristics of double-cone missile shape[J]. Acta Aeronauticaet et Astronautica Sinica, 2020, 41(12): 124116 (in Chinese). | |
10 | VENUKUMAR B, JAGADEESH G, REDDY K. Counterflow drag reduction by supersonic jet for a blunt body in hypersonic flow[J]. Physics of Fluids, 2006, 18(11):471. |
11 | WANG H, JUN L I, JIN D, et al. Effect of a transverse plasma jet on a shock wave induced by a ramp[J]. Chinese Journal of Aeronautics, 2017, 30(6): 1854-1865. |
12 | DUAN L, CHOUDHARI M M. Direct numerical simulations of high-speed turbulent boundary layers over riblets: AIAA-2014-0934[R].Reston:AIAA,2014. |
13 | AHMED M Y M, QIN N. Metamodels for aerothermodynamic design optimization of hypersonic spiked blunt bodies[J]. Aerospace science and technology, 2010, 14(5):364-376. |
14 | 何坤, 袁化成. 典型激波针减阻降热特性及流动机理[J]. 航空动力学报, 2022, 37(5): 1064-1078 |
HE K, YUAN H C. Drag and heat reduction characteristics and flow mechanism of typical aero-spikes[J]. Journal of Aerospace Power, 2022,37(5):1064-1078 (in Chinese). | |
15 | SCHüLEIN E. Wave drag reduction approach for blunt bodies at high anngles of attack: proof-of-concept experiments: AIAA-2008- 4000 [R].Reston:AIAA,2008. |
16 | ROBINSON S K. Effects of riblets on turbulence in a supersonic boundary layer: AIAA-1988-2526[R].Reston:AIAA,1988. |
17 | FARR R, CHANG C L, JONES J H, et al. On the comparison of the long penetration mode (LPM) supersonic counterflowing jet to the supersonic screech jet: AIAA-2015-3126[R].Reston:AIAA,2015. |
18 | VENKATACHARI B S, CHENG G C, CHANG C L. Effect of counterflowing jet on supersonic slender-body configurations: a numerical study[J]. Journal of Spacecraft and Rockets, 2020, 57(6): 1204-1221. |
19 | DENG F, XIE F, QIN N, et al. Drag reduction investigation for hypersonic lifting-body vehicles with aerospike and long penetration mode counterflowing jet[J]. Aerospace Science and Technology, 2018, 76:361-373. |
20 | SUN X W, GUO Z Y, HUANG W, et al. A study of performance parameters on drag and heat flux reduction efficiency of combinational novel cavity and opposing jet concept in hypersonic flows[J]. Acta Astronautica, 2017, 131: 204-225. |
21 | CYBYK B, GROSSMAN K, VAN W D. Computational assessment of the SparkJet flow control actuator: AIAA-2003-3711[R].Reston:AIAA,2003. |
22 | TANG M, YUN W, WANG H, et al. Characterization of transverse plasma jet and its effects on ramp induced separation[J]. Experimental Thermal and Fluid Science, 2018, 99:584-594. |
23 | 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. |
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese). | |
24 | LI Z, SHI Z, DU H. Analytical model: Characteristics of nanosecond pulsed plasma synthetic jet actuator in multiple-pulsed mode [J]. Advances in Applied Mathematics and Mechanics, 2017, 9(2): 439-462. |
/
〈 |
|
〉 |