基于NS/CFIE伴随方程的飞行器气动隐身综合优化
收稿日期: 2022-07-04
修回日期: 2022-07-18
录用日期: 2022-08-10
网络出版日期: 2022-08-31
基金资助
省部级项目
Integrated aerodynamic and stealth optimization of aircraft based on NS/CFIE adjoint equations
Received date: 2022-07-04
Revised date: 2022-07-18
Accepted date: 2022-08-10
Online published: 2022-08-31
Supported by
Provincial or Ministerial Level Project
先进气动隐身综合设计技术是实现未来作战飞机高隐身、高机动、宽速域、远航程等技术指标的关键环节,基于跨学科耦合伴随思想,推导了气动隐身“耦合”伴随方程。首先基于Navier-Stokes方程构建流场伴随方程,进一步通过近场矢量乘和远场矢量乘两部分变分处理,以及雷达散射面积的变分,构建了基于多层快速多极子(MLFMA)算法的电磁伴随方程,结合自主研发的XSQP寻优框架与参数化建模技术,构建高可信度气动隐身综合优化技术平台。以某型飞翼布局为研究对象,进行气动隐身一体化测试。测试结果表明,所建立的伴随平台梯度计算精度较高,优化设计效率极高,能够为作战飞机气动隐身一体化设计提供有力的技术支撑。
黄江涛 , 周琳 , 陈宪 , 马创 , 刘刚 , 高正红 . 基于NS/CFIE伴随方程的飞行器气动隐身综合优化[J]. 航空学报, 2023 , 44(12) : 127757 -127757 . DOI: 10.7527/S1000-6893.2022.27757
Advanced integrated aerodynamic and stealth design technology is the key link to realize the technical indexes of future combat aircraft, such as high stealth, high maneuverability, wide speed range and long range. This study derives the “coupled” adjoint equation of aerodynamic stealth based on the idea of interdisciplinary coupling adjoint. First, the adjoint equation of the flow field is constructed based on the Navier-Stokes equation. Through the variational processing of near-field vector multiplication, far-field vector multiplication, and the radar scattering area, the adjoint equation based on MLFMA is then developed. The electromagnetic adjoint equation of the algorithm, combined with the independently developed XSQP optimization framework and parametric modeling technology, constructs a highly reliable aerodynamic stealth comprehensive optimization technology platform. Taking a certain flying wing layout as the research object, we conduct the aerodynamic stealth integration test. The test results show that both the gradient calculation accuracy of the established accompanying platform and the optimization design efficiency are high, providing strong technical support for the aerodynamic stealth integration design of combat aircraft.
1 | VOS J B, RIZZI A, DARRACQ D, et al. Navier-Stokes solvers in European aircraft design[J]. Progress in Aerospace Sciences, 2002, 38(8): 601-697. |
2 | 武亮, 左向梅. 基于面元修正的机翼非定常气动力分析[J]. 航空计算技术, 2015, 45(6): 83-86. |
WU L, ZUO X M. Unsteady aerodynamics analysis of wing based on panel correction method[J]. Aeronautical Computing Technique, 2015, 45(6): 83-86 (in Chinese). | |
3 | 张淼, 刘铁军, 马涂亮, 等. 基于CFD方法的大型客机高速气动设计[J]. 航空学报, 2016, 37(1): 244-254. |
ZHANG M, LIU T J, MA T L, et al. High speed aerodynamic design of large civil transporter based on CFD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 244-254 (in Chinese). | |
4 | 李洁, 刘战合, 王英, 等. 飞行器目标RCS计算方法适用性研究[J]. 战术导弹技术, 2012(1): 38-42, 63. |
LI J, LIU Z H, WANG Y, et al. Research on the applicability of the approach for calculating the RCS of aircraft target[J]. Tactical Missile Technology, 2012(1): 38-42, 63 (in Chinese). | |
5 | GAO Z H, WANG M L. An efficient algorithm for calculating aircraft RCS based on the geometrical characteristics[J]. Chinese Journal of Aeronautics, 2008, 21(4): 296-303. |
6 | HAN Z H, ZHANG K S, LIU J, et al. Surrogate-based aerodynamic shape optimization with application to wind turbine airfoils: AIAA-2013-1108[R]. Reston: AIAA, 2013. |
7 | ZHANG K S, HAN Z H, LI W J, et al. Coupled aerodynamic and structural optimization of a subsonic-transport wing using surrogate model[C]∥ 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
8 | 王超, 高正红. 小展弦比薄机翼精细化气动优化设计研究[J]. 中国科学: 技术科学, 2015, 45(6): 643-653. |
WANG C, GAO Z H. Refined aerodynamic design optimization of a wing with small aspect ratio[J]. Scientia Sinica (Technologica), 2015, 45(6): 643-653 (in Chinese). | |
9 | 黄江涛,刘刚,高正红,等 .飞行器多学科耦合伴随系统的现状与发展趋势[J].航空学报, 2020, 41(5): 623404. |
HUANG J T, LIU G, GAO Z H, et al. Current situation and development trend of multidisciplinary coupled adjoint system for aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623404 (in Chinese). | |
10 | 黄江涛,周铸,刘刚,等 .飞行器气动/结构多学科延迟耦合伴随系统数值研究[J].航空学报, 2018, 39(5): 121731. |
HUANG J T, ZHOU Z, LIU G, et al. Numerical study of aero-structural multidisciplinary lagged coupled adjoint system for aircraft[J].Acta Aeronautica et Astronautica Sinica,2018,39(5):121731 (in Chinese). | |
11 | MARTINS J R. A coupled-adjoint method for high-fidelity aero-structural optimization[D]. Stanford:Stanford Stanford University, 2002. |
12 | CHARLES M, GAETAN K, JOAQUIN M. Towards high-fidelity aerostructural optimization using a coupled adjoint approach[C]∥12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2008. |
13 | ABU-ZURAYK M. Constrained aero-elastic multi-point optimization using the coupled adjoint approach[C]∥ MUSAF II Colloquium, 2013. |
14 | LEOVIRIYAKIT K, JAMESON A. Case studies in aero-structural wing planform and section optimization[C]∥ 22nd Applied Aerodynamics Conference and Exhibit. Reston: AIAA, 2004. |
15 | 黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J]. 航空学报, 2019, 40(5): 122505. |
HUANG J T, ZHANG Y D, GAO Z H, et al. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122505 (in Chinese). | |
16 | ABU-ZURAYK M, BREZILLON J. Shape optimization using the aerostructural coupled ajoint approach for viscous flows[C]∥ Evolutionary and Deterministic Methods for Design, Optimization and Control, 2011. |
17 | MARCELET M, PETER J, G′ CARRIER. Sensitivity analysis of a strongly coupled aero-structural system using direct and adjoint methods: AIAA-2008-5863[R]. Reston: AIAA, 2008. |
18 | GHAZLANE I, CARRIER G, DUMONT A. Aerostructural adjoint method for flexible wing optimization AIAA-2012-1924[R]. Reston: AIAA, 2012. |
19 | HUANG J, YU J, GAO Z, et al. Multi-disciplinary optimization of large civil aircraft using a coupled aero-structural adjoint approach[M]∥Lecture notes in electrical engineering. Singapore: Springer Singapore, 2019: 1042-1054. |
20 | ZHOU L, HUANG J T, GAO Z H. Radar cross section gradient calculation based on adjoint equation of method of moment[M]∥Lecture notes in electrical engineering. Singapore: Springer Singapore, 2019: 1427-1445. |
21 | HARRINGTON F. Field computation by moment methods[M]. New York: Wiley-IEEE Press, 1993. |
22 | 黄江涛, 刘刚, 周铸, 等. 基于离散伴随方程求解梯度信息的若干问题研究[J]. 空气动力学学报, 2017, 35(4): 554-562. |
HUANG J T, LIU G, ZHOU Z, et al. Investigation of gradient computation based on discrete adjoint method[J]. Acta Aerodynamica Sinica, 2017, 35(4): 554-562 (in Chinese). | |
23 | ERGUL O, GUREL L. Iterative solutions of electromagnetics problems with MLFMA [M]. New York : Wiley-IEEE Press, 2014: 177-268. |
24 | ROKHLIN V. Rapid solution of integral equations of scattering theory in two dimensions[J]. Journal of Computational Physics, 1990, 86(2): 414-439. |
25 | SPEKREIJSE S, PRANANTA B, KOK J. A simple, robust and fast algorithm to compute deformations of multi-block structured grids: NLR-TP-2002-105 [R]. Netherlands: National Aerospace Laboratory, 2002. |
26 | 朱心雄. 自由曲线曲面造型技术[M]. 北京: 科学出版社, 2000. |
ZHU X X. Free-form curve and surface modeling technology[M]. Beijing: Science Press, 2000 (in Chinese). | |
27 | HUANG J T, ZHOU Z, GAO Z H, et al. Aerodynamic multi-objective integrated optimization based on principal component analysis[J]. Chinese Journal of Aeronautics, 2017, 30(4): 1336-1348. |
28 | ZHOU L, HUANG J T, GAO Z H, et al. Three-dimensional aerodynamic/stealth optimization based on adjoint sensitivity analysis for scattering problem[J]. AIAA Journal, 2020, 58(6): 2702-2715. |
/
〈 |
|
〉 |