致密非晶SiCN低压热稳定性及高温导电行为

  • 牛家宏 ,
  • 贾浩楠 ,
  • 易法军 ,
  • 彭祖军 ,
  • 陈伟
展开
  • 1.四川大学 空天科学与工程学院,成都 610207
    2.哈尔滨工业大学 特种环境复合材料技术国防科技重点实验室,哈尔滨 150001
    3.浙江清华柔性电子技术研究院,嘉兴 314006
.E-mail: chenwei2017@scu.edu.cn

收稿日期: 2022-06-30

  修回日期: 2022-07-27

  录用日期: 2022-08-17

  网络出版日期: 2022-08-31

基金资助

中央高校基本科研业务费(YJ202164);四川省自然科学基金(2022NSFSC0294);国家自然科学基金(12002312)

Low-pressure thermal stability and high-temperature electrical conductivity of dense amorphous SiCN

  • Jiahong NIU ,
  • Haonan JIA ,
  • Fajun YI ,
  • Zujun PENG ,
  • Wei CHEN
Expand
  • 1.School of Aeronautics and Astronautics,Sichuan University,Chengdu 610207,China
    2.Science and Technology on Advanced Composites in Special Environment Laboratory,Harbin Institute of Technology,Harbin 150001,China
    3.Institute of Flexible Electronics Technology of Tsinghua,Zhejiang,Jiaxing 314006,China

Received date: 2022-06-30

  Revised date: 2022-07-27

  Accepted date: 2022-08-17

  Online published: 2022-08-31

Supported by

Chinese Fundamental Research Funds for Central Universities(YJ202164);Natural Science Foundation of Sichuan Province(2022NSFSC0294);National Natural Science Foundation of China(12002312)

摘要

准确量化高超声速飞行器高温热端部件的气动加热量是开展热防护系统设计、提高热端部件可靠性的关键。通过开展致密非晶SiCN在低压环境下的热稳定性及高温导电行为研究探讨了将非晶SiCN应用于高超声速飞行器传感领域的可行性。结果表明致密非晶SiCN在低压环境下表现出更低的高温稳定性及抗结晶能力,即在1 300 ℃发生较明显的结晶及热分解,温度较常压高温处理非晶SiCN低约200 ℃;低压环境促进自由碳的有序化转变,导致1 000 ℃低压高温处理非晶SiCN的电阻较常压高温处理非晶SiCN低约4个数量级,表现出更低的温度敏感性。总之非晶SiCN在低压环境下仍能保持优异的温度感知能力,但使用温度有所下降,降低约200 ℃。

本文引用格式

牛家宏 , 贾浩楠 , 易法军 , 彭祖军 , 陈伟 . 致密非晶SiCN低压热稳定性及高温导电行为[J]. 航空学报, 2022 , 43(S2) : 152 -159 . DOI: 10.7527/S1000-6893.2022.27732

Abstract

Accurately quantifying the aerodynamic heating of high-temperature components of a hypersonic vehicle help develop the thermal protection system design and improve the reliability of the high-temperature components. In this paper, the feasibility about high temperature sensing of amorphous SiCN in the hypersonic aircraft field is discussed by studying the thermal stability and high-temperature electrical conductivity of dense amorphous SiCN under low pressure environment. The results show that the dense amorphous SiCN exhibits lower high temperature stability and anti-crystallization ability under low pressure environment.The visible crystallization and thermal decomposition occur at 1 300 ℃, which is about 200 ℃ lower than that of amorphous SiCN treated at normal pressure. The low pressure promotes the ordering transformation of free carbon. The resistance of amorphous SiCN treated at low pressure and 1 000 ℃ is about 4 orders of magnitude lower than that of amorphous SiCN treated at normal pressure, showing lower temperature sensitivity. In conclusion, amorphous SiCN still maintains excellent temperature sensing ability under low pressure environment, but the operating temperature has dropped by about 200 ℃.

参考文献

1 梁伟, 金华, 孟松鹤, 等. 高超声速飞行器新型热防护机制研究进展[J]. 宇航学报, 2021, 42(4): 409-424.
  LIANG W, JIN H, MENG S H, et al. Research progress on new thermal protection mechanism of hypersonic vehicles[J]. Journal of Astronautics, 2021, 42(4): 409-424 (in Chinese).
2 徐世南, 吴催生. 高超声速飞行器热防护结构研究进展[J]. 飞航导弹, 2019(4): 48-55.
  XU S N, WU C S. Research progress of thermal protection structure of hypersonic vehicle[J]. Aerodynamic Missile Journal, 2019(4): 48-55 (in Chinese).
3 孟松鹤, 丁小恒, 易法军, 等. 高超声速飞行器表面测热技术综述[J]. 航空学报, 2014, 35(7): 1759-1775.
  MENG S H, DING X H, YI F J, et al. Overview of heat measurement technology for hypersonic vehicle surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1759-1775 (in Chinese).
4 DURRANT R, DUSSY S, CROWLE H, et al. SiREUS: Status of the European MEMS rate sensor[C]∥ AIAA Guidance, Navigation and Control Conference and Exhibit. Reston: AIAA, 2008: 6992.
5 WRIGHT N G, HORSFALL A B. SiC sensors: A review[J]. Journal of Physics D: Applied Physics, 2007, 40(20): 6345-6354.
6 COLOMBO P, MERA G, RIEDEL R, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics[J]. Journal of the American Ceramic Society, 2010, 93(7): 1805-1837.
7 RICOHERMOSO E III, ROSENBURG F, KLUG F, et al. Piezoresistive carbon-containing ceramic nanocomposites—A review[J]. Open Ceramics, 2021, 5: 100057.
8 SUJITH R, JOTHI S, ZIMMERMANN A, et al. Mechanical behaviour of polymer derived ceramics—A review[J]. International Materials Reviews, 2021, 66(6): 426-449.
9 National Energy Technology Laboratory. NETL collaboration produces smart sensors to monitor ultra-high temperature energy systems[EB/OL]. (2019-02-19) [2022-06-30]. .
10 RYU H Y, WANG Q, RAJ R. Ultrahigh-temperature semiconductors made from polymer-derived ceramics[J]. Journal of the American Ceramic Society, 2010, 97(4):1668-1676.
11 ZHAO R, SHAO G, CAO Y J, et al. Temperature sensor made of polymer-derived ceramics for high-temperature applications[J]. Sensors and Actuators A: Physical, 2014, 219: 58-64.
12 JUNG S, SEO D, LOMBARDO S J, et al. Fabrication using filler controlled pyrolysis and characterization of polysilazane PDC RTD arrays on quartz wafers[J]. Sensors and Actuators A: Physical, 2012, 175: 53-59.
13 CUI Z F, LI X, CHEN G C, et al. Thin-film temperature sensor made from particle-filled polymer-derived ceramics pyrolyzed in vacuum[J]. Journal of the European Ceramic Society, 2022, 42(6): 2735-2742.
14 MONTEVERDE F, SAVINO R. Stability of ultra-high-temperature ZrB2-SiC ceramics under simulated atmospheric re-entry conditions[J]. Journal of the European Ceramic Society, 2007, 27(16): 4797-4805.
15 GOPINATH N K, JAGADEESH G, BASU B. Shock wave‐material interaction in ZrB2-SiC based ultra high temperature ceramics for hypersonic applications[J]. Journal of the American Ceramic Society, 2019, 102(11): 6925-6938.
16 HAUG J, LAMPARTER P, WEINMANN M, et al. Diffraction study on the atomic structure and phase separation of amorphous ceramics in the Si-(B)-C-N system. 2. Si-B-C-N ceramics[J]. Chemistry of Materials, 2004, 16(1): 83-92.
17 PRASAD R M, MERA G, MORITA K, et al. Thermal decomposition of carbon-rich polymer-derived silicon carbonitrides leading to ceramics with high specific surface area and tunable micro- and mesoporosity[J]. Journal of the European Ceramic Society, 2012, 32(2): 477-484.
18 KLEEBE H J, SUTTOR D, MüLLER H, et al. Decomposition-crystallization of polymer-derived Si-C-N ceramics[J]. Journal of the American Ceramic Society, 2005, 81(11): 2971-2977.
19 XU T H, MA Q S, CHEN Z H. The effect of environment pressure on high temperature stability of silicon oxycarbide glasses derived from polysiloxane[J]. Materials Letters, 2011, 65(11): 1538-1541.
20 NIU J H, MENG S H, JIN H, et al. Thermal stability and nanostructure evolution of amorphous SiCN ceramics during laser ablation in an argon atmosphere[J]. Journal of the European Ceramic Society, 2019, 39(15): 4535-4544.
21 CHEN Y H, YANG X P, CAO Y J, et al. Quantitative study on structural evolutions and associated energetics in polysilazane-derived amorphous silicon carbonitride ceramics[J]. Acta Materialia, 2014, 72: 22-31.
22 FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20): 14095-14107.
文章导航

/