跨越第二宇宙速度的膨胀管风洞研制

  • 吕治国 ,
  • 龚红明 ,
  • 常雨 ,
  • 廖振洋 ,
  • 钟涌
展开
  • 1.中国空气动力研究与发展中心 超高速空气动力研究所,绵阳 621000
    2.中国空气动力研究与发展中心 跨流域空气动力学重点实验室,绵阳 621000
. E-mail: lzgde2003@126.com

收稿日期: 2022-06-30

  修回日期: 2022-07-27

  录用日期: 2022-08-16

  网络出版日期: 2022-08-31

基金资助

国家级项目

Development of an expansion tunnel with gas flow speed greater than escape velocity

  • Zhiguo LYU ,
  • Hongming GONG ,
  • Yu CHANG ,
  • Zhenyang LIAO ,
  • Yong ZHONG
Expand
  • 1.Hypervelocity Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China
    2.Laboratory of Aerodynamics in Multiple Flow Regimes,China Aerodynamics Research and Development Center,Mianyang 621000,China
E-mail: lzgde2003@126.com

Received date: 2022-06-30

  Revised date: 2022-07-27

  Accepted date: 2022-08-16

  Online published: 2022-08-31

Supported by

National Level Project

摘要

为了解决再入飞行器涉及到的高焓真实气体效应、辐射传热等关键气动问题,满足中国下一代航天飞行器研制对高焓环境模拟的需求,中国空气动力研究与发展中心建成了一座工程应用型的高焓膨胀管风洞。重点介绍了风洞的一些关键技术及解决途径,包括气动设计、活塞驱动、大口径耐冲击夹膜机构设计、双滚动浮动支撑运行、配套高焓瞬态测试技术,风洞流场调试的初步结果及测试技术验证等情况。流场调试结果表明:高焓膨胀管风洞实现的关键技术指标气流速度、焓值和有效试验时间范围分别是1.63~11.50 km/s、1.5~71.7 MJ/kg和0.1~1.1 ms,该风洞具备了进行高焓真实气体效应问题研究的地面试验模拟能力。

本文引用格式

吕治国 , 龚红明 , 常雨 , 廖振洋 , 钟涌 . 跨越第二宇宙速度的膨胀管风洞研制[J]. 航空学报, 2022 , 43(S2) : 138 -151 . DOI: 10.7527/S1000-6893.2022.27729

Abstract

In order to solve the high enthalpy real gas effect, radiation heat transfer and other key aerodynamic problems involved in reentry vehicles, and meet the needs of next generation spacecraft development for high enthalpy environment simulation, China Aerodynamics Research and Development Center has built a productive piston-driven high enthalpy expansion tunnel. This paper mainly introduces some key technologies and solutions of this expansion tunnel, including aerodynamic design, piston drive, and design of large-diameter impact resistant diagram, matching high enthalpy transient testing and other technologies, preliminary validation and calibration results. The flow field debugging results show that the key technical indicators of the high enthalpy expansion tunnel, such as gas flow velocity, enthalpy and effective test time range, are 1.63-11.50 km/s, 1.5-71.7 MJ/kg and 0.1-1.1 ms, respectively. This expansion tunnel has the ground test simulation capability to study the real gas effects of high enthalpy.

参考文献

1 陈苏宇, 江涛, 常雨, 等. 高超声速钝头体边界层转捩试验[J]. 航空学报, 2020, 41(12): 124098.
  CHEN S Y, JIANG T, CHANG Y, et al. Hypersonic boundary layer transition over bodies with blunt nosetip[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124098 (in Chinese).
2 张扣立, 周嘉穗, 孔荣宗, 等. CARDC激波风洞TSP技术研究进展[J]. 空气动力学学报, 2016, 34(6): 738-743.
  ZHANG K L, ZHOU J S, KONG R Z, et al. Development of TSP technique in shock tunnel of CARDC[J]. Acta Aerodynamica Sinica, 2016, 34(6): 738-743 (in Chinese).
3 李强, 江涛, 陈苏宇, 等. 激波风洞边界层转捩测量技术及应用[J]. 航空学报, 2019, 40(8): 122740.
  LI Q, JIANG T, CHEN S Y, et al. Measurement technique and application of boundary layer transition in shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122740 (in Chinese).
4 姜宗林, 李进平, 赵伟, 等. 长试验时间爆轰驱动激波风洞技术研究[J]. 力学学报, 2012, 44(5): 824-831.
  JIANG Z L, LI J P, ZHAO W, et al. Investigating into techniques for extending the test-duration of detonation-driven shock tunnels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 824-831 (in Chinese).
5 韩子健, 彭俊, 胡宗民, 等. JF-12激波风洞在火星进入环境下的运行特性[J]. 航空学报, 2021, 42(3): 124129.
  HAN Z J, PENG J, HU Z M, et al. Operating characteristics of JF-12 shock tunnel in Mars entry tests[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 124129 (in Chinese).
6 陈星, 毕志献, 蒋博, 等.一座新高能脉冲风洞的建设[C]∥第十七届全国激波与激波管学术会议, 2016.
  CHEN X, BI Z X, JIANG B, et al.Construction of a new high energy pulse wind tunnel[C]∥The 17th National Shock and Shock Tube Academic Conference, 2016 (in Chinese).
7 陈星, 谌君谋, 毕志献,等. 自由活塞高焓脉冲风洞发展历程及试验能力综述[J].实验流体力学,2019,33(4): 65-80.
  CHEN X, SHEN J M, BI Z X, et al. Review on the development of the free-piston high enthalpy impulse wind tunnel and its testing capacities[J]. Journal of Experiments in Fluid Mechanics, 2019,33(4): 65-80 (in Chinese).
8 孙日明, 谌君谋, 陈星.高焓激波风洞自由活塞速度测量系统[J].应用科技, 2020, 47(6): 58-62.
  SUN R M, SHEN J M, CHEN X. Speed measurement of free piston in high-energy shock tunnel[J]. Applied Science and Technology, 2020,47(6): 58-62 (in Chinese).
9 吕治国, 李国君, 赵荣娟, 等. 卡尔斯潘公司高超声速脉冲设备建设历程分析[J]. 实验流体力学, 2014, 28(5): 1-6.
  LYU Z G, LI G J, ZHAO R J, et al. The analysis of hypersonic impulse facility building course in Calspan[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(5): 1-6 (in Chinese).
10 Calspan-UB Research Center. Large energy national shock tunnel: description and capabilities: ADA338839[R]. Washington,D.C.: NASA, 1990.
11 HOLDEN M S, PARKER R A. LENS hypervelocity tunnels and application to vehicle testing at duplicated flight conditions[M]∥Advanced hypersonic test facilities. Reston: AIAA, 2002: 73-110.
12 HOLDEN M, WADHAMS T, MACLEAN M, et al. Experimental studies in LENS I and X to evaluate real gas effects on hypevelocity vehicle performance[C]?∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
13 BELANGER J, HORNUNG H. Numerical predictions and actual behavior of the free piston shock tunnel T5[C]∥25th Plasmadynamics and Lasers Conference. Reston: AIAA, 1994.
14 TANNO H, SATO K, KOMURO T, et al. Aerodynamic testing with accelerometers in the high enthalpy shock tunnel HIEST[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
15 NAGAYAMA T, NAGAI H, TANNO H, et al. Global heat flux measurement using temperature-sensitive paint in high-enthalpy shock tunnel HIEST[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017.
16 ROGHELIA A, OLIVIER H, EGOROV I, et al. Experimental investigation of G?rtler vortices in hypersonic ramp flows[J]. Experiments in Fluids, 2017, 58(10): 139.
17 MARTINEZ SCHRAMM J, KARL S, HANNEMANN K, et al. Ground testing of the HyShot II scramjet configuration in HEG[C]∥15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
18 MACLEAN M, MARINEAU E, PARKER R, et al. Effect of surface catalysis on measured heat transfer in an expansion tunnel facility[C]∥50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.
19 HORNUNG H. Ground testing for hypervelocity flow, capabilities and limitations:RTO-EN-AVT-186[R]. California:California Institute of Technology, 2010.
20 TAKAHASHI M, KODERA M, ITOH K, et al. Influence of thermal non-equilibrium on nozzle flow condition of high enthalpy shock tunnel HIEST[C]∥16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2009.
21 PARK C. Thermochemical relaxation in shock tunnels[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
22 MACLEAN M, HOLDEN M, WADHAMS T, et al. A computational analysis of thermochemical studies in the LENS facilities[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
23 HALL J G, TREANOR C E. Nonequilibrium effects in supersonic-nozzle flows: AD684951 [R]. Pairs:AGARD, 1969.
24 RESLER E, BLOXSOM D. Very high Mach number flows by unsteady flow principles[D]. Queensland: Cornell University, 1952.
25 NOMPELIS I, CANDLER G, HOLDEN M, et al. Numerical simulation of high-enthalpy experiments in the LENS X expansion tube facility[C]∥42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004.
26 WEISBERGER J M, MACLEAN M G, PARKER R A, et al. Near-surface nitric oxide concentration measurement in the LENS-XX expansion tunnel facility[C]∥44th AIAA Thermophysics Conference. Reston: AIAA, 2013.
27 CALLEJA J, TAMAGNO J. Calibration of HYPULSE for hypervelocity air flows corresponding to flight Mach numbers 13.5, 15, and 17[R]. Washington,D.C.: NASA, 1993.
28 SCOTT M, MORGAN R, JACOBS P. A new single stage driver for the X2 expansion tube[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
29 JACOBS P A. Quasi-one-dimensional modeling of a free-piston shock tunnel[J]. AIAA Journal, 1994, 32(1): 137-145.
30 GILDFIND D E, MORGAN R G, JACOBS P A, et al. Production of high-Mach-number scramjet flow conditions in an expansion tube[J]. AIAA Journal, 2013, 52(1): 162-177.
31 GILDFIND D E, JACOBS P A, MORGAN R G. Vibration isolation in a free-piston driven expansion tube facility[J]. Shock Waves, 2013, 23(5): 431-438.
32 SASOH A, OHNISHI Y, KOREMOTO K, et al. Operation design and performance of a free-piston-driven expansion tube[C]∥37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999.
33 李海燕, 李志辉, 吕治国, 等. 自由活塞压缩管ALE方法数值模拟[J]. 力学学报, 2016, 48(2): 348-352.
  LI H Y, LI Z H, Lü Z G, et al. Arbitrary Lagrangian eulerian simulation of free piston compression tube[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 348-352 (in Chinese).
34 李海燕, 吕治国, 罗万清, 等. 高焓膨胀管中压缩管最佳长度设计分析[J]. 计算力学学报, 2016, 33(6): 919-924.
  LI H Y, LYU Z G, LUO W Q, et al. Design and analysis of the optimal length for compression tube in the high enthalpy expansion tube[J]. Chinese Journal of Computational Mechanics, 2016, 33(6): 919-924 (in Chinese).
35 常雨, 孔荣宗, 吕治国. 基于理论方法的膨胀管气动设计及其气动特性分析[C]∥第八届全国高超声速科技学术会议,2015.
  CHANG Y, KONG R Z, LYU Z G. Aerodynamic design and aerodynamic characteristics analysis of expansion tube based on theoretical method[C]∥The 8th National Hypersonic Science and Technology Academic Conference, 2015 (in Chinese).
36 常雨, 徐胜利, 龚红明, 等.自由活塞驱动膨胀管运行及其气动特性分析[C]∥第三届进入、减速与着陆(EDL)技术全国学术会议, 2015.
  CHANG Y, XU S L, GONG H M, et al. Operation of free piston driven expansion tube and analysis of its aerodynamic characteristics[C]∥The third National Academic Conference on Entry, Deceleration and Landing (EDL)Technology, 2015 (in Chinese).
37 陈坚强, 吴晓军, 张健, 等. FlowStar: 国家数值风洞(NNW)工程非结构通用CFD软件[J]. 航空学报, 2021, 42(9): 625739.
  CHEN J Q, WU X J, ZHANG J, et al. FlowStar: General unstructured-grid CFD software for national numerical windtunnel(NNW) project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625739 (in Chinese).
38 陈琦, 陈坚强, 袁先旭, 等. 国家数值风洞(NNW)工程在高超声速中的应用研究进展[J]. 航空学报, 2021, 42(9): 625746.
  CHEN Q, CHEN J Q, YUAN X X, et al. Progress on application of National Numerical Windtunnel project for hypersonic[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625746 (in Chinese).
39 吕治国, 常雨, 钟涌, 等.膨胀管风洞活塞驱动技术重点关注的问题[C]∥第三届载人航天学术大会,2014.
  LYU Z G, CHANG Y, ZHONG Y, et al. Key problems of piston driving technology in expansion tube wind tunnel[C]∥The Third Manned Aerospace Academic Conference, 2014 (in Chinese).
40 吕治国, 李国君, 孔荣宗, 等.膨胀管(风洞)驱动技术研究[C]∥中国力学大会-激波与激波管分会,2013.
  LYU Z G, LI G J, KONG R Z, et al. Research on driving technology of expansion tube (tunnel)[C]∥China Mechanical Conference-Shock and Shock Tube Branch,2013 (in Chinese).
41 吕治国, 李国君, 徐胜利, 等.立式自由活塞布局研究[C]∥中国力学大会激波与激波管分会,2015.
  LYU Z G, LI G J, XU S L, et al. Research on vertical free piston layout[C]∥China Mechanical Conference- Shock and Shock Tube Branch, 2015 (in Chinese).
42 吕治国, 苏克新, 孔荣宗, 等. 活塞驱动结构布局研究[C]∥第十七届全国激波与激波管学术会议,2016.
  LYU Z G, SU K X, KONG R Z, et al. Research on piston drive structure layout[C]∥The 17th National Shock Wave and Shock Tube Academic Conference, 2016 (in Chinese).
43 吕治国, 常雨, 钟涌, 等. 膨胀管风洞活塞驱动关键技术初步研究[J]. 载人航天, 2016, 22(2): 215-220.
  LYU Z G, CHANG Y, ZHONG Y, et al. Primary research on key technologies of piston driving in expansion tunnel[J]. Manned Spaceflight, 2016, 22(2): 215-220 (in Chinese).
44 吕治国, 李国君, 常雨, 等.膨胀管风洞设备及运行特点分析[C]∥第一届进入、减速与着陆(EDL)技术全国学术会议, 2013.
  LYU Z G, LI G J, CHANG Y, et al. Analysis of equipment and operation characteristics of expansion tunnel[C]∥The First National Academic Conference on Entry, Deceleration and Landing (EDL) Technology, 2013 (in Chinese).
45 吕治国, 常雨, 廖振洋, 等. 自由活塞驱动高焓膨胀管风洞性能及初步调试[C]∥中国力学大会-激波与激波管分会, 2019.
  LYU Z G, CHANG Y, LIAO Z Y, et al. Performance and preliminary commissioning of high enthalpy expansion tunnel driven by free piston[C]∥China Mechanical Conference-Shock and Shock Tube Branch, 2019 (in Chinese).
46 龚红明, 常雨, 廖振洋, 等. 高焓膨胀管风洞性能调试试验研究[C]∥第十九届全国激波与激波管学术会议,2020.
  GONG H M, CHANG Y, LIAO Z Y, et al. Experimental study on performance adjustment of high enthalpy expansion tube wind tunnel[C]∥The 19th National Shock and Shock Tube Academic Conference, 2020 (in Chinese).
47 GILDFIND D E, MORGAN R G. A new sliding joint to accommodate recoil of a free-piston-driven expansion tube facility[J]. Shock Waves, 2016, 26(6): 825-833.
文章导航

/