等离子鞘套包覆钝锥的双站极化散射特性
收稿日期: 2022-06-30
修回日期: 2022-07-27
录用日期: 2022-08-17
网络出版日期: 2022-08-31
基金资助
国家自然科学基金(62171349);陕西省自然科学基础研究计划(2020JM-102)
Bistatic polarization scattering characteristic of plasma-sheath-covered blunt cone
Received date: 2022-06-30
Revised date: 2022-07-27
Accepted date: 2022-08-17
Online published: 2022-08-31
Supported by
National Natural Science Foundation of China(62171349);Natural Science Basic Research Plan in Shaanxi Province(2020JM-102)
高超声速目标在再入大气层过程中会产生覆盖在目标表面的等离子体鞘套,其对电磁波具有复杂的调制作用,并显著影响高超声速目标的散射特性。本文分析了等离子体鞘套包覆高超声速目标的双站极化散射特性。基于数值模拟的典型高度和速度下等离子鞘套参数,采用电流密度卷积法模拟了线极化平面电磁波与高超声速飞行器之间的相互作用过程。采用远场外推方法得到在俯仰角-90°~90°之间的双站极化散射分量(共极化和交叉极化)。通过对典型雷达工作频点下不同飞行和入射波条件下极化散射方向分布特性的分析,得到了飞行高度、入射角和极化模式对等离子鞘套包覆钝锥双站极化RCS的影响。
牛戈钊 , 刘彦明 , 高澜 , 张廷焜 , 白博文 . 等离子鞘套包覆钝锥的双站极化散射特性[J]. 航空学报, 2022 , 43(S2) : 97 -105 . DOI: 10.7527/S1000-6893.2022.27722
The plasma sheath covering the vehicle’s surface will be generated during the reentry of the hypersonic vehicle, which has a complex modulation effect on the electromagnetic (EM) wave and significantly affects the scattering characteristics of the hypersonic vehicle. This paper analyzes the bistatic polarization scattering characteristics of a plasma-sheath-covered hypersonic vehicle. Based on the plasma sheath parameters at typical heights and velocities solved by numerical simulation, the current density convolution method was used to simulate the interaction between the linearly polarized plane EM wave and the hypersonic vehicle. The bistatic scattering components (co-polarization and cross-polarization) at the pitch angles of -90°-90° are obtained by the far-field extrapolation method. Through studying the direction distribution characteristics of polarization scattering under different conditions of flight and incident wave at typical radar operating frequency points, this paper analyzes the effects of flight height, incident angle and polarization mode on the bistatic polarization RCS of the plasma-sheath-covered blunt cone.
1 | WANG T T, MA J X, WEI Z A. Effect of electron reflection on magnetized plasma sheath in an oblique magnetic field[J]. Physics of Plasmas, 2015, 22(9): 093505. |
2 | GUO L X, CHEN W, LI J T, et al. Scattering characteristics of electromagnetic waves in time and space inhomogeneous weakly ionized dusty plasma sheath[J]. Physics of Plasmas, 2018, 25(5): 053707. |
3 | BAI B W, LI X P, LIU Y M, et al. Effects of reentry plasma sheath on the polarization properties of obliquely incident EM waves[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3365-3372. |
4 | SUN H Y, CUI Z, WANG J,et al.Analysis of electromagnetic scattering characteristics of plasma sheath surrounding a hypersonic aerocraft based on high-order auxiliary differential equation finite-difference time-domain[J]. Physics of Plasmas, 2018,25(6):063514. |
5 | CHEN W, GUO L X, LI J T, et al. Research on the FDTD method of electromagnetic wave scattering characteristics in time-varying and spatially nonuniform plasma sheath[J]. IEEE Transactions on Plasma Science, 2016, 44(12): 3235-3242. |
6 | BIAN Z, LI J T, GUO L X, et al. Range profile analysis of hypersonic vehicles covered by inhomogeneous plasma sheath using physical optics[J]. IEEE Transactions on Plasma Science, 2019, 47(11): 4961-4970. |
7 | CHEN W, GUO L X, LI J T. Research on the FDTD method of scattering effects of obliquely incident electromagnetic waves in time-varying plasma sheath on collision and plasma frequencies[J]. Physics of Plasmas, 2017, 24(4): 042102. |
8 | REN Y, GUO L X, CHEN W, et al. Analysis of the electromagnetic scattering characteristics in two-dimensional time-varying and spatially non-uniform plasma sheath[J]. Physics of Plasmas, 2018, 25(9): 093515. |
9 | DING Y, BAI B, GAO H, et al.Method of detecting a target enveloped by a plasma sheath based on doppler frequency compensation[J]. IEEE Transactions on Plasma Science, 2020,48(12): 4103-4111. |
10 | NOROUZIAN F, MARCHETTI E, GASHINOVA M, et al. Rain attenuation at millimeter wave and low-THz frequencies[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(1): 421-431. |
11 | DONG X Y, CHEN H Y, GUO D H. Microwave and millimeter-wave attenuation in sand and dust storms[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 469-471. |
12 | SINGH H, KUMAR V, SAXENA K, et al. Proposed model for radio wave attenuation due to rain (RWAR)[J]. Wireless Personal Communications, 2020, 115(1): 791-807. |
13 | KLA?KA J, KOCIFAJ M. Scattering of electromagnetic waves by charged spheres and some physical consequences[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 106(1-3): 170-183. |
14 | CHEN Q, KATSURAI M, AOYAGI P H. An FDTD formulation for dispersive media using a current density[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(11): 1739-1746. |
15 | 葛德彪.闫玉波. 电磁波时域有限差分方法[M]. 3版. 西安: 西安电子科技大学出版社, 2011. |
GE D B, YAN Y B. Finite-difference time-domain method for electromagnetic waves[M].3rd ed. Xi'an: Xidian University Press, 2011 (in Chinese). |
/
〈 |
|
〉 |