高焓风洞中等离子体激励流动控制试验

  • 罗凯 ,
  • 王永海 ,
  • 汪球 ,
  • 栗继伟 ,
  • 李峥 ,
  • 聂春生 ,
  • 李铮
展开
  • 1.中国科学院 力学研究所 高温气体动力学国家重点实验室,北京 100190
    2.中国运载火箭技术研究院 空间物理重点实验室,北京 100076
E-mail: bghbuaa@aliyun.com

收稿日期: 2022-06-30

  修回日期: 2022-07-27

  录用日期: 2022-08-11

  网络出版日期: 2022-08-31

基金资助

国家自然科学基金(12072352);中国科学院青年创新促进会(2021020)

Plasma-actuated flow control test in high enthalpy shock tunnel

  • Kai LUO ,
  • Yonghai WANG ,
  • Qiu WANG ,
  • Jiwei LI ,
  • Zheng LI ,
  • Chunsheng NIE ,
  • Zheng LI
Expand
  • 1.State Key Laboratory of High-Temperature Gas Dynamics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China
    2.Science and Technology on Space Physics Laboratory,China Academy of Launch Vehicle Technology,Beijing 100076,China
E-mail: bghbuaa@aliyun.com

Received date: 2022-06-30

  Revised date: 2022-07-27

  Accepted date: 2022-08-11

  Online published: 2022-08-31

Supported by

National Natural Science Foundation of China(12072352);Youth Innovation Promotion Association CAS(2021020)

摘要

采用等离子体流动控制改善飞行器气动性能是近年来流动控制领域研究的热点。基于爆轰驱动高焓激波风洞的高总温、高马赫数来流状态研究表面电弧放电技术对流场流动结构以及热流、压力等接触式测量方法的影响规律。结果表明:等离子体放电对双楔流动结构的影响可分为干扰激波产生以及原有激波的恢复阶段,其对流动结构的作用时间约为66.68 μs;强放电对空间电势的影响导致其对热电偶以及压阻传感器等接触式方法的测量数据造成干扰,本文试验状态下的干扰时间约为200 μs,远大于放电对于流动控制的作用时间;另外,采用低通滤波方法、噪声幅值以及噪声时域幅值的加权处理一定程度上可以对测量的干扰信号进行优化,并得到相对合理的试验数据,但该处理方法的正确性仍然需要更丰富的试验数据进行验证。

本文引用格式

罗凯 , 王永海 , 汪球 , 栗继伟 , 李峥 , 聂春生 , 李铮 . 高焓风洞中等离子体激励流动控制试验[J]. 航空学报, 2022 , 43(S2) : 89 -96 . DOI: 10.7527/S1000-6893.2022.27720

Abstract

The use of plasma flow control to improve the aerodynamic performance of aircraft is a hot research topic in the field of flow control in recent years. In this paper, based on the high total temperature and high Mach number freestream of the detonation-driven high enthalpy shock tunnel, the influence law of surface arc discharge technology on the flow structure of the flow field and contact measurement methods, such as heat flux and pressure, are investigated. The results show that the influence of arc discharge on the double wedge flow structure can be divided into the phases of interference shock generation and recovery of the original shock, and its action time on the flow structure is about 66.68 μs. The effect of arc discharge on the space potential causes interference with the measurement data of contact methods such as thermocouples and piezoresistive sensors. The interference time in the test state of this paper is about 200 μs, which is much longer than the action time of the discharge on the flow. Additionally, the low-pass filtering method, the noise amplitude and the weighted processing of the noise time domain amplitude can optimize the interference signal of pressure and temperature to a certain extent and obtain relatively reasonable test data. However, the processing method still needs more abundant test data for verification.

参考文献

1 周岩. 新型等离子体合成射流及其激波控制特性研究[D]. 长沙: 国防科技大学, 2018.
  ZHOU Y. Novel plasma synthetic jet and its application in shock wave control[D]. Changsha: National University of Defense Technology, 2018 (in Chinese).
2 WANG J J, CHOI K S, FENG L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62: 52-78.
3 TANG M X, WU Y, ZONG H H, et al. Experimental investigation of supersonic boundary-layer tripping with a spanwise pulsed spark discharge array[J]. Journal of Fluid Mechanics, 2022, 931: A16.
4 ZHOU Y, XIA Z X, LUO Z B, et al. A novel ram-air plasma synthetic jet actuator for near space high-speed flow control[J]. Acta Astronautica, 2017, 133: 95-102.
5 苑朝凯. 溢流冷却液膜厚度测量方法研究[D]. 北京: 中国科学院大学, 2017.
  YUAN C K. Study on liquid film thickness measurement method for overflow cooling[D]. Beijing: University of Chinese Academy of Sciences, 2017 (in Chinese).
6 沈斌贤. 高速飞行器高温燃气逆向射流与发汗热防护的研究[D]. 长沙: 国防科技大学, 2019.
  SHEN B X. Investigation of opposing jet and transpiration thermal protection with hot fuel gas on hypersonic vehicles[D]. Changsha: National University of Defense Technology, 2019 (in Chinese).
7 HANQUIST K M. Modeling of electron transpiration cooling for leading edges of hypersonic vehicles[D]. Ann Arbor: University of Michigan, 2017.
8 常雨. 高空反向喷流流场的数值模拟研究[D]. 长沙: 国防科学技术大学, 2004.
  CHANG Y. Numerical simulation research for high altitude reverse jet flow[D]. Changsha: National University of Defense Technology, 2004 (in Chinese).
9 IM S, DO H, CAPPELLI M A. Dielectric barrier discharge control of a turbulent boundary layer in a supersonic flow[J]. Applied Physics Letters, 2010, 97(4): 041503.
10 YAN H, LIU F, XU J, et al. Study of oblique shock wave control by surface arc discharge plasma[J]. AIAA Journal, 2018, 56(2): 532-541.
11 KHODATAEV K V. Microwave discharges and possible applications in aerospace technologies[J]. Journal of Propulsion and Power, 2008, 24(5): 962-972.
12 洪延姬, 李倩, 方娟, 等. 激光等离子体减阻技术研究进展[J]. 航空学报, 2010, 31(1): 93-101.
  HONG Y J, LI Q, FANG J, et al. Advances in study of laser plasma drag reduction technology[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 93-101 (in Chinese).
13 MOREAU E. Airflow control by non-thermal plasma actuators[J]. Journal of Physics D: Applied Physics, 2007, 40(3): 605-636.
14 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027.
  ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese).
15 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405.
  WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405 (in Chinese).
16 JIN D, LI Y H, JIA M, et al. Investigation on the shockwave induced by surface arc plasma in quiescent air[J]. Chinese Physics B, 2014, 23(3): 035201.
17 LI Y H, WANG J, WANG C, et al. Properties of surface arc discharge in a supersonic airflow[J]. Plasma Sources Science and Technology, 2010, 19(2): 025016.
18 SAMIMY M, ADAMOVICH I, WEBB B, et al. Development and characterization of plasma actuators for high-speed jet control[J]. Experiments in Fluids, 2004, 37(4): 577-588.
文章导航

/