磁流体流动控制作为一种主动流动控制技术,通过外加磁场影响强激波后的等离子体流场运动,可有效改善高超声速飞行器的气动性能。本文通过数值模拟方法,研究不同磁感应强度、磁体位置对双锥模型绕流流动结构以及流场内关键参数分布的影响机理和规律。结果表明,偶极子磁场下,随着磁感应强度增加,逆流向洛伦兹力始终主导流场内的三波点位置、分离区大小以及壁面热流和压力的峰值状态,同时洛伦兹力的存在还将改变激波后电子密度分布;磁体位置前移时,洛伦兹力的分量以及峰值位置的变化会导致其对分离激波的作用加强,这有利于进一步控制分离区结构以及壁面热流和压力的分布。
As an active flow control technique, MHD flow control can effectively improve the aerodynamic performance of hypersonic vehicles by influencing the motion of the plasma flow field after strong excitation through an applied magnetic field. In this paper, the influence of different magnetic induction intensity and magnet position on the flow structure and the distribution of key parameters in the double-cone model are studied by numerical simulation. The results show that the countercurrent Lorentz force always dominates the position of the three wave points, the size of the separation region and the peak value of wall heat flux and pressure in the flow field with the increase of magnetic induction intensity. Meanwhile, the existence of Lorentz force will also change the electron density distribution behind the shock wave; In addition, when the magnet position moves forward, the change of the component and peak position of Lorentz force will strengthen the effect on the separation shock wave, which is conducive to further control the structure of the separation region and the distribution of wall heat flux and pressure.
罗凯, 汪球, 李逸翔, 李进平, 赵伟. 基于高温气体效应的磁流体流动控制研究进展. 力学学报, 2021, 53(6): 1515-1531. (In Chinese)
Luo K, Wang Q, Li YX, et al. Research progress on magneto-hydrodynamic flow control under test conditions with high temperature real gas effect[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1515-1531.
[2] Bush WB. Magnetohydrodynamic-hypersonic flow past a blunt body[J]. Journal of Aerospace Sciences, 1958, 25(11): 685-690.
[3] Resler EL Jr, Sears WR. The prospects for magneto-aerodynamics[J]. Journal of Aerospace Sciences, 1958, 25(4): 235-245.
[4] Poggie J, Gaitonde DV. Magnetic control of flow past a blunt body: Numerical validation and exploration[J]. Physics of Fluids, 200.
[5] Otsu H, Abe T, Funaki I. Application of electrodynamic heat shield system to super-orbital reentry vehicles[J]. Japan Society of Aeronautical Space Sciences, 2006, 54(628): 181-188.
[6] Fujino T, Ishikawa M. Numerical simulation of control of plasma flow with magnetic field for thermal protec-tion in earth reentry flight[J]. IEEE Transactions on Plasma Science, 2006, 34(2): 409-419.
[7] Gülhan A, Esser B, Koch U, et al. Experimental verifica-tion of heat-flux mitigation by electromagnetic fields in partially-ionized-argon flows[J]. Journal of Spacecraft and Rockets, 2009, 46(2): 274-283.
[8] Nagata Y, Yamada K, Abe T. Hypersonic double-cone flow with applied magnetic field[J]. Journal of Space-craft & Rockets, 2013, 50(5): 981-991.
[9] 靳鹏. 高焓风洞中激波边界层相互作用流动的数值重建与机理分析[D].长沙: 国防科技大学, 2018.
Jin P. Numerical rebuilding and mechanism analysis of shock、boundary-layer interaction in high-enthalpy tunnel[D]. Changsha: National University of Defense Technology, 2018. (In Chinese)
[10] Gnoffo PA. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium. NASA TP-2867, 1989
[11] Li XD, Hu ZM, Jiang ZL. Numerical Investigation on the Thermal Protection Mechanism for Blunt Body with Forward-facing Cavity[J]. Science China Technological Sciences, 2016, 59(3): 1-10.
[12] Dunn MG, Kang S. Theoretical and experimental studies of reentry plasmas, 1973
[13] Park C. Assessment of Two-Temperature Kinetic Model for Ionizing Air[J]. Journal of Thermophysics and Heat Transfer, 1989, 3(3): 233–244
[14] Gnoffo PA. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium. NASA TP-2867, 1989
[15] Blottner FG, Johnson M, Ellis M. Chemically Reacting Viscous Flow Program for Multi-component Gas Mix-tures, United States, 1971
[16] Wilke CR, Chem J. Phys. 18, 517 (1950)
[17] Ding MS, Liu QZ, Jiang T, et al. Impact of high temper-ature gas effect on hypersonic magnetohydrodynamic control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(02): 82-94
[18] Kim KH, Kim C, Rho OH. Methods for the Accurate Computations of Hypersonic Flows: I. AUSMPW+ Scheme[J]. Journal of Computational Physics, 2001, 174(1): 38-80
[19] Jameson A, Yoon S. Lower-Upper Implicit Schemes with Multiple Grids for the Euler Equations[J]. AIAA Journal, 1987, 25(7): 929-935
[20] Nagata Y, Wasai K, Makino H, et al. Test Flow Condi-tions for the Expansion Tube Experiment[C]. 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 2010.
[21] 李开. 高超声速流动的磁流体力学控制数值模拟研究[D].长沙: 国防科学技术大学, 2017.
Li K. Mechanism analysis of magnetohydrodynamic heat shield system including high temperature real gas effect[D]. Changsha: National University of De-fense Technology, 2017. (In Chinese)