非线性耦合本构在高空侧向喷流中的数值研究
收稿日期: 2022-06-29
修回日期: 2022-07-27
录用日期: 2022-08-26
网络出版日期: 2022-08-31
基金资助
国家自然科学基金(12002306)
Numerical study on high-altitude lateral jet based on nonlinear coupled constitutive relation
Received date: 2022-06-29
Revised date: 2022-07-27
Accepted date: 2022-08-26
Online published: 2022-08-31
Supported by
National Natural Science Foundation of China(12002306)
随着高度攀升,气动舵面对飞行器的控制效率急剧下降,此时侧向喷流作为最常用的反作用控制系统(RCS)在飞行器机动过程中发挥着不可或缺的作用。Navier-Stokes (NS) 方程虽在低空连续流问题的求解中表现尚可,但在滑移流(0.01<Kn<0.1)乃至过渡流域(0.1<Kn<10)中常常由于连续性假设失效而存在局限性。为了准确捕捉稀薄过渡流中侧向喷流与来流大气的干扰流动特征,运用非线性耦合本构关系(NCCR)模型对不同来流高度下几个典型的侧向喷流问题进行模拟计算,并与NS方程和蒙特卡洛直接模拟(DSMC)方法预测的结果进行对比,以此检验NCCR模型在高空复杂流动情况下的准确性和适用性。研究结果表明:NCCR模型与NS方程在连续流域的模拟结果具有较高的一致性,而在滑移过渡流域NCCR模型更能准确反映喷口前后的分离区大小以及表面流动特征,并且对于引入侧向喷流后造成的激波-激波干扰这一类复杂流动机理的描述,NCCR模型预测结果较NS方程更为贴近DSMC结果。
黄依峰 , 曾舒华 , 江中正 , 陈伟芳 . 非线性耦合本构在高空侧向喷流中的数值研究[J]. 航空学报, 2022 , 43(S2) : 8 -22 . DOI: 10.7527/S1000-6893.2022.27700
As the altitude climbs, the aircraft control efficiency by the pneumatic rudder drops sharply with the increase of the Kn number, when the lateral jet, as the most commonly used type of a Reaction Control System (RCS), plays a key role in the aircraft maneuvering process. Despite the good performance of the Navier-Stokes(NS) equations in low-altitude continuous flow problems, they fail to predict the slip flows (0.01<Kn<0.1) and even the transitional flows (0.1<Kn<10) due to the breakdown of continuity assumptions. To accurately capture the flow interference characteristics of the lateral jet and free stream in the rarefied transitional flow regime, this paper simulated typical lateral jet flow problems at different altitudes using the Nonlinear Coupled Constitutive Relations (NCCR) model and the NS model. The results of Direct Simulation of Monte Carlo (DSMC) were compared to further illustrate the reliability of the NCCR model in these cases. The research showed that the simulation results of the NCCR model and NS model have a high consistency in the continuous flow regime, and the NCCR model can more accurately predict the separation zone size and surface flow characteristics near the nozzle in the slip flow and transitional flow regimes. Moreover, compared with the NS equations, the NCCR model agrees better with the DSMC prediction in describing the complex flow mechanism of shock-shock interaction caused by the lateral jet.
1 | TARTABINI P, WILMOTH R, RAULT D. A systems approach to a DSMC calculation of a control jet interaction experiment[C]∥ 28th Thermophysics Conference. Reston: AIAA, 1993: 2798. |
2 | GLASS C E. Numerically simulating an expanding continuum jet into a surrounding non-continuum region[M].Washington, D.C.: NASA, 2018. |
3 | 陈伟芳, 吴明巧, 任兵. DSMC/EPSM混合算法研究[J]. 计算力学学报, 2003, 20(3): 274-278. |
CHEN W F, WU M Q, REN B. On study of hybrid DSMC/EPSM method[J]. Chinese Journal of Computational Mechanics, 2003, 20(3): 274-278 (in Chinese). | |
4 | BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford: Clarendon Press, 1994 |
5 | EU B C. Relativistic kinetic theory for matter[M]∥Kinetic theory of nonequilibrium ensembles, irreversible thermodynamics, and generalized hydrodynamics. Cham: Springer International Publishing, 2016: 1-95. |
6 | EU B C. Kinetic theory and irreversible thermodynamics[M]. New York: J. Wiley, 1992 |
7 | 肖洪, 商雨禾, 吴迪, 等. 稀薄气体动力学的非线性耦合本构方程理论及验证[J]. 航空学报, 2015, 36(7): 2091-2104. |
XIAO H, SHANG Y H, WU D, et al. Nonlinear coupled constitutive relations and its validation for rarefied gas flows[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2091-2104 (in Chinese). | |
8 | JIANG Z Z, ZHAO W W, CHEN W F, et al. Eu's generalized hydrodynamics with its derived constitutive model: Comparison to Grad's method and linear stability analysis[J]. Physics of Fluids, 2021, 33(12): 127116. |
9 | JIANG Z Z, ZHAO W W, YUAN Z Y, et al. Computation of hypersonic flows over flying configurations using a nonlinear constitutive model[J]. AIAA Journal, 2019, 57(12): 5252-5268. |
10 | JIANG Z, ZHAO W, CHEN W, et al. Computation of shock wave structure using a simpler set of generalized hydrodynamic equations based on nonlinear coupled constitutive relations[J]. Shock Waves, 2019, 29(8): 1227-1239. |
11 | 江中正, 赵文文, 袁震宇, 等. 基于非线性耦合本构关系的改进边界条件[J]. 航空学报, 2018, 39(10): 122057. |
JIANG Z Z, ZHAO W W, YUAN Z Y, et al. An enhanced wall-boundary condition based on nonlinear coupled constitutive relations[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 122057 (in Chinese). | |
12 | 江中正. 稀薄气体流动非线性耦合本构关系模型理论与数值研究[D]. 杭州: 浙江大学, 2019. |
JIANG Z Z. Theoretical and numerical investigations of nonlinear coupled constitutive relation model in rarefied gas flows[D]. Hangzhou: Zhejiang University, 2019 (in Chinese). | |
13 | JIANG Z Z, CHEN W F, ZHAO W W. Numerical analysis of the micro-Couette flow using a non-Newton-Fourier model with enhanced wall boundary conditions[J]. Microfluidics and Nanofluidics, 2018, 22(1): 10. |
14 | YUAN Z Y, ZHAO W W, JIANG Z Z, et al. Numerical simulation of hypersonic reaction flows with nonlinear coupled constitutive relations[J]. Aerospace Science and Technology, 2021, 112: 106591. |
15 | HE Z Q, JIANG Z Z, ZHANG H W, et al. Analytical method of nonlinear coupled constitutive relations for rarefied non-equilibrium flows[J]. Chinese Journal of Aeronautics, 2021, 34(2): 136-153. |
16 | 王振. 非线性耦合本构方程的计算方法与验证[D]. 杭州: 浙江大学, 2020. |
WANG Z. Calculation method and verification of nonlinear coupled constitutive equations[D]. Hangzhou: Zhejiang University, 2020 (in Chinese). | |
17 | 吴忧, 徐旭, 陈兵, 等. 高马赫数下横/逆向喷流干扰流场数值研究[J]. 航空学报, 2021, 42(S1): 726359. |
WU Y, XU X, CHEN B, et al. Numerical study on transverse/opposing jet interaction flowfield under high Mach number[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726359 (in Chinese). | |
18 | 王泽江, 李杰, 曾学军, 等. 逆向喷流对双锥导弹外形减阻特性的影响[J]. 航空学报, 2020, 41(12): 124116. |
WANG Z J, LI J, ZENG X J, et al. Effect of opposing jet on drag reduction characteristics of double-cone missile shape[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124116 (in Chinese). | |
19 | CURTISS C F. The classical Boltzmann equation of a gas of diatomic molecules[J]. Journal of Chemical Physics, 1981, 75: 376-378. |
20 | BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511-525. |
21 | EU B C, OHR Y G. Generalized hydrodynamics, bulk viscosity, and sound wave absorption and dispersion in dilute rigid molecular gases[J]. Physics of Fluids, 2001, 13(3): 744-753. |
22 | GRAD H. Asymptotic theory of the boltzmann equation[J]. The Physics of Fluids, 1963, 6(2): 147-181. |
23 | LEVERMORE C D. Moment closure hierarchies for kinetic theories[J]. Journal of Statistical Physics, 1996, 83: 5-6. |
24 | TORRILHON M, STRUCHTRUP H. Regularized 13-moment equations: Shock structure calculations and comparison to Burnett models[J]. Journal of Fluid Mechanics, 2004, 513: 171-198. |
25 | AL-GHOUL M, EU B. Generalized hydrodynamics and shock waves[J]. Physical Review E, 1997, 56(3): 2981-2992. |
26 | EU B C. The modified moment method, irreversible thermodynamics, and the nonlinear viscosity of a dense fluid[J]. Journal of Chemical Physics, 1981, 74: 6362-6372. |
27 | MYONG R S. Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows[J]. Physics of Fluids, 1999, 11(9): 2788-2802. |
28 | MYONG R S. A computational method for Eu's generalized hydrodynamic equations of rarefied and microscale gasdynamics[J]. Journal of Computational Physics, 2001, 168(1): 47-72. |
29 | MYONG R S. A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows[J]. Journal of Computational Physics, 2004, 195(2): 655-676. |
30 | MAXWELL J C. On stresses in rarified gases arising from inequalities of temperature[J]. Philosophical Transactions of the Royal Society of London, 1879, 170: 231-256. |
31 | 陈坚强, 张益荣, 郭勇颜. 高超声速流动数值模拟方法及应用[M]. 北京: 科学出版社, 2019: 153-154. |
CHEN J Q, ZHANG Y R, GUO Y Y. Numerical simulation method of hypersonic flow and its application[M]. Beijing: Science Press, 2019: 153-154 (in Chinese). | |
32 | OSHER S. Convergence of generalized MUSCL schemes[J]. SIAM Journal on Numerical Analysis, 1985, 22(5): 947-961. |
33 | KIM K H, KIM C, RHO O H. Methods for the accurate computations of hypersonic flows[J]. Journal of Computational Physics, 2001, 174(1): 38-80. |
34 | YOON S, JAMESON A. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9): 1025-1026. |
35 | MYONG R S. A full analytical solution for the force-driven compressible Poiseuille gas flow based on a nonlinear coupled constitutive relation[J]. Physics of Fluids, 2011, 23(1): 012002. |
36 | LE N T P, XIAO H, MYONG R S. A triangular discontinuous Galerkin method for non-Newtonian implicit constitutive models of rarefied and microscale gases[J]. Journal of Computational Physics, 2014, 273: 160-184. |
37 | JIANG Z Z. An undecomposed hybrid algorithm for nonlinear coupled constitutive relations of rarefied gas dynamics[J]. Communications in Computational Physics, 2019, 26(3): 880-912. |
38 | BIRD G A, GALLIS M A, TORCZYNSKI J R, et al. Accuracy and efficiency of the sophisticated direct simulation Monte Carlo algorithm for simulating noncontinuum gas flows[J]. Physics of Fluids, 2009, 21(1): 017103. |
39 | 张庆虎. 超声速流动分离及其控制的试验研究[D]. 长沙: 国防科学技术大学, 2013. |
ZHANG Q H. Experimental investigation of supersonic flow separation and its micro-ramp control[D]. Changsha: National University of Defense Technology, 2013 (in Chinese). | |
40 | 李季. 高温非平衡效应下的激波干扰与激波反射[D]. 合肥: 中国科学技术大学, 2015. |
LI J. On shock interactions and reflections with high temperature non-equilibrium effects[D]. Hefei: University of Science and Technology of China, 2015 (in Chinese). |
/
〈 |
|
〉 |