固体力学与飞行器总体设计

基于多源信息的隐含非线性维纳退化过程剩余寿命预测

  • 杨家鑫 ,
  • 唐圣金 ,
  • 李良 ,
  • 孙晓艳 ,
  • 祁帅 ,
  • 司小胜
展开
  • 1.火箭军工程大学 导弹工程学院,西安 710025
    2.火箭军工程大学 作战保障学院,西安 710025
    3.火箭军装备部驻郑州军代表室,郑州 450000
.E-mail: tangshengjin27@126.com

收稿日期: 2022-06-22

  修回日期: 2022-07-14

  录用日期: 2022-08-15

  网络出版日期: 2022-08-31

基金资助

国家自然科学基金(61703410);陕西省自然科学基础研究计划(2022JM-376)

Remaining useful life prediction of implicit nonlinear Wiener degradation process based on multi-source information

  • Jiaxin YANG ,
  • Shengjin TANG ,
  • Liang LI ,
  • Xiaoyan SUN ,
  • Shuai QI ,
  • Xiaosheng SI
Expand
  • 1.Missile Engineering College,Rocket Force University of Engineering,Xi’an 710025,China
    2.Operational Support College,Rocket Force University of Engineering,Xi’an 710025,China
    3.Military Representative Office of Rocket Force Equipment Department in Zhengzhou,Zhengzhou 450000,China

Received date: 2022-06-22

  Revised date: 2022-07-14

  Accepted date: 2022-08-15

  Online published: 2022-08-31

Supported by

National Natural Science Foundation of China(61703410);Basic Research Plan of Shaanxi Natural Science Foundation(2022JM-376)

摘要

准确的剩余寿命预测对提高系统的可靠性安全性具有重要意义。在工程应用中,经常会遇到先验退化信息不完美或缺失的情况,且线性退化模型往往难以跟踪非线性退化特征。为解决这一问题,针对带测量误差的非线性退化系统,基于隐含非线性维纳退化过程模型,提出了一种合理融合失效寿命数据和多源信息的剩余寿命预测方法。首先,通过理论推导,得到了隐含非线性维纳退化过程的参数估计性质与退化数据之间的关系,为合理融合多源信息提供了理论依据。其次,根据参数估计的性质,分别使用现场退化数据和历史退化数据估计2种预测情况下的模型固定参数,并使用期望最大化算法将失效寿命数据信息融入退化模型中。再次,根据现场退化数据,使用Kalman滤波算法在线更新漂移参数。最后,通过仿真实验进一步验证了参数估计的性质,并通过2个实例验证了所提方法的优越性。

本文引用格式

杨家鑫 , 唐圣金 , 李良 , 孙晓艳 , 祁帅 , 司小胜 . 基于多源信息的隐含非线性维纳退化过程剩余寿命预测[J]. 航空学报, 2023 , 44(12) : 227662 -227662 . DOI: 10.7527/S1000-6893.2022.27662

Abstract

Accurate remaining useful life prediction is of huge significance in improving the reliability and safety of the system. Practical engineering often encounters imperfect or scarce prior degradation information, with the nonlinear degradation characteristics difficult to track by the linear degradation models. To solve this problem, we propose a remaining useful life prediction method for nonlinear degradation systems with measurement errors by reasonably fusing failure time data and multi-source information, based on the implicit nonlinear Wiener degradation process model. Firstly, we obtain the relationship between the degradation data and the nature of parameter estimation based on the implicit nonlinear Wiener degradation process by theoretical derivation, providing a theoretical basis for reasonable fusion of multi-source information. Secondly, according to the nature of parameter estimation, we use the field degradation data and historical degradation data to estimate the model fixed parameters of the two prediction cases respectively and fuse the failure time data into the degradation model by the Expectation Maximization (EM) algorithm. Then, the Kalman filtering algorithm is used to update online the drift parameter based on the field degradation data. Finally, simulation experiments are conducted to further verify the nature of parameter estimation, and two practical case studies are used to verify the superiority of the proposed method.

参考文献

1 YAN B, MA X, YANG L, et al. A novel degradation-rate-volatility related effect Wiener process model with its extension to accelerated ageing data analysis[J]. Reliability Engineering & System Safety2020204: 107138.
2 TANG S J, GUO X S, YU C Q, et al. Real time remaining useful life prediction based on nonlinear Wiener based degradation processes with measurement errors[J]. Journal of Central South University201421(12): 4509-4517.
3 HU J W, SUN Q Z, YE Z S, et al. Joint modeling of degradation and lifetime data for RUL prediction of deteriorating products[J]. IEEE Transactions on Industrial Informatics202117(7): 4521-4531.
4 李天梅, 司小胜, 张建勋. 多源传感监测线性退化设备数模联动的剩余寿命预测方法[J]. 航空学报202344(8): 227190.
  LI T M, SI X S, ZHANG J X. Data-model interactive remaining useful life prediction method for multi-sensor monitored linear stochastic degrading devices[J]. Acta Aeronautica et Astronautica Sinica202344(8): 227190 (in Chinese).
5 HU G, XU Z Q, WANG G R, et al. Forecasting energy consumption of long-distance oil products pipeline based on improved fruit fly optimization algorithm and support vector regression[J]. Energy2021224: 120153.
6 LIU D, WANG S Q. Reliability estimation from lifetime testing data and degradation testing data with measurement error based on evidential variable and Wiener process[J]. Reliability Engineering & System Safety2021205: 107231.
7 WANG X, WANG B X, JIANG P H, et al. Accurate reliability inference based on Wiener process with random effects for degradation data[J]. Reliability Engineering & System Safety2020193: 106631.
8 ZHENG Z X, SI X S, HU C H, et al. Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods[J]. European Journal of Operational Research2018271(3): 775-796.
9 SI X S, WANG W B, HU C H, et al. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation[J]. Mechanical Systems and Signal Processing201335(1-2): 219-237.
10 李天梅,司小胜,刘翔,等.大数据下数模联动的随机退化设备剩余寿命预测技术[J].自动化学报202248(9):2119-2141.
  LI T M, SI X S, LIU X, et al. Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data[J]. Acta Automatica Sinica202248(9):2119-2141 (in Chinese).
11 GEBRAEEL N Z, LAWLEY M A, LI R, et al. Residual-life distributions from component degradation signals: A Bayesian approach[J]. IIE Transactions200537(6): 543-557.
12 BIAN L K, GEBRAEEL N. Computing and updating the first-passage time distribution for randomly evolving degradation signals[J]. IIE Transactions201244(11): 974-987.
13 GEBRAEEL N, ELWANY A, PAN J. Residual life predictions in the absence of prior degradation knowledge[J]. IEEE Transactions on Reliability200958(1): 106-117.
14 TSAI C C, TSENG S T, BALAKRISHNAN N. Mis-specification analyses of gamma and Wiener degradation processes[J]. Journal of Statistical Planning and Inference2011141(12): 3725-3735.
15 PENG W, LI Y F, YANG Y J, et al. Inverse Gaussian process models for degradation analysis: A Bayesian perspective[J]. Reliability Engineering & System Safety2014130: 175-189.
16 任子强, 司小胜, 胡昌华, 等. 融合多传感器数据的发动机剩余寿命预测方法[J]. 航空学报201940(12): 223312.
  REN Z Q, SI X S, HU C H, et al. Remaining useful life prediction method for engine combining multi-sensors data[J]. Acta Aeronautica et Astronautica Sinica201940(12): 223312 (in Chinese).
17 LIU D, WANG S, ZHANG C. Reliability estimation by fusing multiple-source information based on evidential variable and Wiener process[J]. Computers & Industrial Engineering2021162: 107745.
18 董青,郑建飞,胡昌华,等.考虑随机冲击影响的自适应Wiener过程剩余寿命预测方法[J].航空学报202243(9): 225914.
  DONG Q, ZHENG J F, HU C H, et al. Remaining useful life prediction for adaptive Wiener process method with random shock [J]. Acta Aeronautica et Astronautica Sinica202243(9): 225914 (in Chinese).
19 杨家鑫, 唐圣金, 李良, 等. 基于隐含非线性维纳退化过程的剩余寿命预测[J/OL]. 北京航空航天大学学报, (2022-05-30) [2022-06-22]. .
  YANG J X, TANG S J, LI L, et al. Remaining useful life prediction based on implicit nonlinear Wiener degradation process [J/OL]. Journal of Beijing University of Aeronautics and Astronautics, (2022-05-30) [2022-06-22]. (in Chinese).
20 郑建飞, 胡昌华, 司小胜, 等. 考虑不确定测量和个体差异的非线性随机退化系统剩余寿命估计[J]. 自动化学报201743(2): 259-270.
  ZHENG J F, HU C H, SI X S, et al. Remaining useful life estimation for nonlinear stochastic degrading systems with uncertain measurement and unit-to-unit variability[J]. Acta Automatica Sinica201743(2): 259-270 (in Chinese).
21 SI X S, WANG W B, CHEN M Y, et al. A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution[J]. European Journal of Operational Research2013226(1): 53-66.
22 WANG W, CARR M, XU W, et al. A model for residual life prediction based on Brownian motion with an adaptive drift[J]. Microelectronics Reliability201151(2): 285-293.
23 WANG X, HU C H, SI X S, et al. An adaptive prognostic approach for newly developed system with three-source variability[J]. IEEE Access20197: 53091-53102.
24 SI X S. An adaptive prognostic approach via nonlinear degradation modeling: Application to battery data[J]. IEEE Transactions on Industrial Electronics201562(8): 5082-5096.
25 HUANG Z Y, XU Z G, WANG W H, et al. Remaining useful life prediction for a nonlinear heterogeneous Wiener process model with an adaptive drift[J]. IEEE Transactions on Reliability201564(2): 687-700.
26 FENG L, WANG H L, SI X S, et al. A state-space-based prognostic model for hidden and age-dependent nonlinear degradation process[J]. IEEE Transactions on Automation Science and Engineering201310(4): 1072-1086.
27 TANG S J, YU C Q, WANG X, et al. Remaining useful life prediction of lithium-ion batteries based on the Wiener process with measurement error[J]. Energies20147(2): 520-547.
28 CAI Z Y, CHEN Y X, ZHANG Q, et al. Residual lifetime prediction model of nonlinear accelerated degradation data with measurement error[J]. Journal of Systems Engineering and Electronics201728(5): 1028-1038.
29 TANG S J, XU X D, YU C Q, et al. Remaining useful life prediction with fusing failure time data and field degradation data with random effects[J]. IEEE Access20198: 11964-11978.
30 WANG L, PAN R, LI X, et al. A Bayesian reliability evaluation method with integrated accelerated degradation testing and field information[J]. Reliability Engineering & System Safety2013112: 38-47.
31 PANG Z N, SI X S, HU C H, et al. A Bayesian inference for remaining useful life estimation by fusing accelerated degradation data and condition monitoring data[J]. Reliability Engineering & System Safety2021208: 107341.
32 ZHANG Y, JIA X, GUO B. Bayesian framework for satellite rechargeable lithium battery synthesizing bivariate degradation and lifetime data[J]. Journal of Central South University201825(2): 418-431.
33 TANG S J, WANG W F, SUN X Y, et al. Unbiased parameters estimation and mis-specification analysis of Wiener process-based degradation model with random effects[J]. Applied Mathematical Modelling2022109: 134-160.
34 王凤飞, 唐圣金, 孙晓艳, 等. 考虑随机效应的多源信息融合剩余寿命预测[J/OL]. 北京航空航天大学学报, (2022-03-01) [2022-06-22]. .
  WANG F F, TANG S J, SUN X Y, et al. Remaining useful life prediction based on multi source information with considering random effects [J/OL]. Journal of Beijing University of Aeronautics and Astronautics, (2022-03-01) [2022-06-22]. (in Chinese).
35 CAI Z Y, WANG Z Z, CHEN Y X, et al. Remaining useful lifetime prediction for equipment based on nonlinear implicit degradation modeling[J]. Journal of Systems Engineering and Electronics202031(1): 194-205.
36 SI X S, WANG W B, HU C H, et al. Estimating remaining useful life with three-source variability in degradation modeling[J]. IEEE Transactions on Reliability201463(1): 167-190.
37 TANG S J, GUO X S, ZHOU Z J. Mis-specification analysis of linear Wiener process-based degradation models for the remaining useful life estimation[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2014228(5): 478-487.
38 YANG J X, TANG S J, FANG P Y, et al. Remaining useful life prediction of implicit linear Wiener degradation process based on multi-source information[J/OL]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, (2022-11-19) [2022-11-20], .
39 YE Z S, WANG Y, TSUI K L, et al. Degradation data analysis using Wiener processes with measurement errors[J]. IEEE Transactions on Reliability201362(4): 772-780.
40 HAN Y Y, MA C L, TANG S J, et al. Residual life estimation of lithium-ion batteries based on nonlinear Wiener process with measurement error[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2023237(1): 133-151.
41 万昌豪, 刘志国, 唐圣金, 等. 基于不完美先验信息的随机系数回归模型剩余寿命预测方法[J]. 北京航空航天大学学报202147(12): 2542-2551.
  WAN C H, LIU Z G, TANG S J, et al. Remaining useful life prediction method based on random coefficient regression model with imperfect prior information[J]. Journal of Beijing University of Aeronautics and Astronautics202147(12): 2542-2551 (in Chinese).
42 PENG C Y, TSENG S T. Mis-specification analysis of linear degradation models[J]. IEEE Transactions on Reliability200958(3): 444-455.
43 HONG S, YUE T Y, LIU H. Vehicle energy system active defense: A health assessment of lithium-ion batteries[J]. International Journal of Intelligent Systems202237(12): 10081-10099.
44 JIN G, MATTHEWS D E, ZHOU Z. A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft[J]. Reliability Engineering & System Safety2013113: 7-20.
45 LU C J, MEEKER W O. Using degradation measures to estimate a time-to-failure distribution[J]. Technometrics199335(2): 161-174.
46 WANG X, BALAKRISHNAN N, GUO B. Residual life estimation based on a generalized Wiener degradation process[J]. Reliability Engineering & System Safety2014124: 13-23.
文章导航

/