论文

双余度机电作动器力纷争机理及敏感性

  • 孙晓哲 ,
  • 侯东 ,
  • 杨建忠
展开
  • 中国民航大学 安全科学与工程学院,天津 300300
.E-mail: 2020131003@cauc.edu.cn

收稿日期: 2022-06-01

  修回日期: 2022-06-22

  录用日期: 2022-08-12

  网络出版日期: 2022-08-31

基金资助

中国民航大学研究生科研创新项目(2021YJS076)

Mechanism and sensitivity of force fight in dual redundant electromechanical actuators

  • Xiaozhe SUN ,
  • Dong HOU ,
  • Jianzhong YANG
Expand
  • College of Safety Science and Engineering,Civil Aviation University of China,Tianjin 300300,China

Received date: 2022-06-01

  Revised date: 2022-06-22

  Accepted date: 2022-08-12

  Online published: 2022-08-31

Supported by

Graduate Research Innovation Grant Program in Civil Aviation University of China(2021YJS076)

摘要

双余度主-主模式机电作动系统的位置跟踪过程始终存在对伺服系统安全性不利的力纷争问题,为了更好地抑制力纷争需要解析力纷争的作用机理,确定系统参数对力纷争的影响机理和规律。通过理论分析得到力纷争影响参数,通过蒙特卡罗仿真实验研究了各参数对系统动态力纷争和静态力纷争产生的影响,并对参数进行了力纷争影响的敏感性分析,确定对系统力纷争影响最大的几类因素:位置信号断续、位置信号偏置、位置传感器延迟、传动间隙,为飞控系统力均衡控制方法的设计和系统的符合性验证提供了参考依据。

本文引用格式

孙晓哲 , 侯东 , 杨建忠 . 双余度机电作动器力纷争机理及敏感性[J]. 航空学报, 2023 , 44(S1) : 727661 -727661 . DOI: 10.7527/S1000-6893.2022.27661

Abstract

Existence of force fight in the position response process of the active-active dual redundant electromechanical actuation system is harmful to the safety of servomechanism. To better mitigate force fight, it is necessary to analyze its origin and determine the influence mechanism of system parameters on it. The parameters which have effect on force fight are obtained through theoretical analysis. Through Monte-Carlo simulation, the influence of each parameter on dynamic force fight and static force fight is discussed. By sensitivity analysis of the parameters which have effect on force fight, the parameters that have the greatest influence on force fight are obtained, including position signal discontinuity, position signal offset,delay of position sensor, and backlash,which can provide a reference for the design of the force equalization control method for the flight control system and conformity verification consideration.

参考文献

1 陈晓雷. 多电飞机机电作动伺服系统控制策略研究[D]. 西安: 西北工业大学, 2016: 4-11.
  CHEN X L. Research on control strategy of electromechanical actuation servo system for more electric aircraft[D]. Xi’an: Northwestern Polytechnical University, 2016: 4-11 (in Chinese).
2 QI H T, LANG Y, FU Y L. Modelling and simulation of dissimilar triplex redundant hybrid actuation system[J]. Journal of Applied Sciences201313(9): 1564-1569.
3 ARRIOLA D, THIELECKE F. Design of fault-tolerant control functions for a primary flight control system with electromechanical actuators[C]∥ 2015 IEEE AUTOTESTCON. Piscataway: IEEE Press, 2015: 393-402.
4 KOWALSKI R. Force fight in parallel-redundant electro-mechanical actuation systems[C]∥Proceedings of More Electric Aircraft.2017.
5 WROBLE D G. Force fight study in a dual electromechanical actuator configuration[D]. Dayton: University of Dayton,2017:51-74.
6 李璐, 刘远, 周宇航. 永磁同步电机鲁棒模型预测控制技术综述[J]. 工业仪表与自动化装置2020(5): 11-15.
  LI L, LIU Y, ZHOU Y H. Review of robust model predictive control technology for permanent magnet synchronous motors[J]. Industrial Instrumentation & Automation2020(5): 11-15 (in Chinese).
7 万琦, 刘更, 乔冠, 等. 机电作动器舵回路系统动态特性分析[J]. 机械科学与技术201736(5): 805-810.
  WAN Q, LIU G, QIAO G, et al. Analyzing dynamic characteristics of rudder loop system for an electro-mechanical actuator[J]. Mechanical Science and Technology for Aerospace Engineering201736(5): 805-810 (in Chinese).
8 KOWALSKI R, WINDELBERG J, LADNER R, et al. Force fight compensation for redundant electro-mechanical flight control actuators[C]∥31st Congress of the International Council of the Aeronautical Sciences.Boon:ICAS, 2018.
9 杨珍书. 飞控机电作动系统非线性建模和故障分析[D]. 天津: 中国民航大学, 2018: 9-31.
  YANG Z S. Nonlinear modeling and fault analysis of flight control electromechanical actuation system[D]. Tianjin: Civil Aviation University of China, 2018:9-31 (in Chinese).
10 白玉轩. 基于神经网络的飞控机电作动系统传感器故障检测研究[D]. 天津: 中国民航大学, 2020: 7-20.
  BAI Y X. Sensor fault detection of flight control electromechanical actuation system based on neutral network[D]. Tianjin: Civil Aviation University of China, 2020: 7-20 (in Chinese).
11 肖前进, 贾宏光, 章家保, 等. 电动舵机伺服系统非线性辨识及补偿[J]. 光学 精密工程201321(8): 2038-2047.
  XIAO Q J, JIA H G, ZHANG J B, et al. Identification and compensation of nonlinearity for electromechanical actuator servo system[J]. Optics and Precision Engineering201321(8): 2038-2047 (in Chinese).
12 HUANG J, LIU Y, ZHANG X H, et al. Dynamic modeling and simulation of electro-mechanical actuator coupled with nonlinear factors[C]∥ 2018 37th Chinese Control Conference. Piscataway:IEEE Press, 2018: 3776-3780.
13 IJAZ S, HAMAYUN M T, ANWAAR H, et al. LPV modeling and tracking control of dissimilar redundant actuation system for civil aircraft[J]. International Journal of Control, Automation and Systems201917(3): 705-715.
14 ARRIOLA D, THIELECKE F.Model-based design and experimental verification of a monitoring concept for an active-active electromechanical aileron actuation system[J]. Mechanical Systems and Signal Processing201794: 322-345.
15 魏泽宇, 许文波, 张国林, 等. 航天机电伺服系统的自抗扰控制[J]. 控制理论与应用202138(1): 73-80.
  WEI Z Y, XU W B, ZHANG G L, et al. Active disturbance rejection control of aerospace electromechanical servo system[J]. Control Theory & Applications202138(1): 73-80 (in Chinese).
16 范殿梁, 付永领, 郭彦青, 等. 非相似余度作动系统动态力均衡控制策略[J]. 北京航空航天大学学报201541(2): 234-240.
  FAN D L, FU Y L, GUO Y Q, et al. Dynamic force equalization for dissimilar redundant actuator system[J]. Journal of Beijing University of Aeronautics and Astronautics201541(2): 234-240 (in Chinese).
17 DI RITO G, LUCIANO B, BORGARELLI N, et al. Model-based condition-monitoring and jamming-tolerant control of an electro-mechanical flight actuator with differential ball screws[J]. Actuators202110(9): 230.
18 颉宏宇. 系统参数不确定情况下永磁同步电机控制策略研究[D]. 成都: 电子科技大学, 2021: 14-23.
  XIE H Y. Research on control strategy of permanent magnet synchronous motor with uncertain system parameters[D]. Chengdu: University of Electronic Science and Technology of China, 2021:14-23 (in Chinese).
19 何晶晶, 高亚奎, 张家盛. 液压伺服作动系统力纷争敏感度及机理研究[J]. 测控技术201837(10): 39-43.
  HE J J, GAO Y K, ZHANG J S. Sensitivity and mechanism for force fighting of servo-hydraulic actuation system[J]. Measurement & Control Technology201837(10): 39-43 (in Chinese).
20 SIALA H, MHENNI F, BARKALLAH M, et al. Parametric tolerance specification of an electromechanical actuator[C]∥ 2018 12th France-Japan and 10th Europe-Asia Congress on Mechatronics. Piscataway: IEEE Press, 2018: 269-273.
21 LI T, YANG T, CAO Y Y, et al. Disturbance-estimation based adaptive backstepping fault-tolerant synchronization control for a dual redundant hydraulic actuation system with internal leakage faults[J]. IEEE Access20197: 73106-73119.
文章导航

/