雷诺应力与涡黏性模型的分离流预测对比分析
收稿日期: 2022-06-14
修回日期: 2022-06-29
录用日期: 2022-08-10
网络出版日期: 2022-08-31
基金资助
国家自然科学基金(11902367);湖南省自然科学基金(S2021JJQNJJ2716);空气动力学国家重点实验室开放课题(SKLA-20200202)
Comparative analysis of Reynolds stress and eddy viscosity models in separation flow prediction
Received date: 2022-06-14
Revised date: 2022-06-29
Accepted date: 2022-08-10
Online published: 2022-08-31
Supported by
National Natural Science Foundation of China(11902367);Natural Science Foundation of Hunan Province(S2021JJQNJJ2716);State Key Laboratory of Aerodynamics(SKLA-20200202)
现代飞行器设计对流动分离的准确预测需求愈发迫切,但使用广泛的涡黏性模型预测结果却不尽如人意。雷诺应力模型凭借其扎实的理论基础有可能获得可信度更高的结果,但其性能优势仍需进一步评估与发掘。选取了 SST模型、Stress-BSL(Baseline) 模型分别作为涡黏性和雷诺应力模型的代表,对二维驼峰、二维跨声速凸块、跨声速三维 ONERA M6 机翼等算例进行了数值仿真。结果表明,相较于实验值,2种模型的预测结果均出现流动分离点提前,再附点滞后的现象,但 Stress-BSL 模型的预测误差更小,表现出了强逆压梯度下预测分离流动的优势。通过分析发现,2种模型对雷诺应力的低估导致了分离区较大。具体表现为 SST 模型引入的 Bradshaw 假设限制了湍动能的生成,使得模型计算的涡黏性系数偏小,强逆压梯度下低估边界层雷诺应力,导致流动分离提前。而分离区上缘处的雷诺应力预测偏小则被认为是流动再附滞后的主要原因。对于雷诺应力模型,误差主要来源于雷诺应力输运方程再分配项的模化不准。最后,针对上述原因,对 SST 模型关键封闭参数进行了重新标定,并进行了初步验证,结果表明修改后的模型预测表现好于原模型结果。
赵雅甜 , 邵志远 , 阎超 , 向星皓 . 雷诺应力与涡黏性模型的分离流预测对比分析[J]. 航空学报, 2023 , 44(11) : 127619 -127619 . DOI: 10.7527/S1000-6893.2022.27619
The demand for accurate prediction of flow separation in modern aircraft design is becoming increasingly urgent, yet the prediction results of the widely used eddy viscosity model are not satisfactory. With its solid theoretical foundation, the Reynolds stress model may obtain more reliable results; however, its performance advantages still need to be further evaluated and explored. In this paper, the shear stress transport model and stress baseline model are selected as the representatives of the eddy viscosity model and Reynolds stress model, respectively, and numerical simulations are carried out for two-dimensional hump, two-dimensional transonic bump and three-dimensional transonic ONERA M6 wing. Compared with the experimental values, the prediction results of the two models show that the flow separation point is ahead of time and the reattachment point lags behind, while the prediction error of the Stress BSL model is smaller, showing the advantage of separation flow prediction under strong reverse pressure gradient. It is found that the two models underestimate the Reynolds stress, resulting in a large separation zone. Specifically, the Bradshaw hypothesis introduced into the SST model limits the generation of turbulent kinetic energy, reduces the eddy viscosity coefficient calculated by the model, underestimates the Reynolds stress in the boundary layer under strong adverse pressure gradient, and leads to early flow separation. The smaller Reynolds stress prediction value at the upper edge of the separation zone is considered to be the main cause for the lag of flow reattachment. For the Reynolds stress model, the error mainly originates from the inaccurate modeling of the redistribution term of the Reynolds stress transport equation. Finally, aiming at the above causes, we recalibrate and preliminarily verify the key closure parameters of the SST model. The results show that the modified model performs better than the original model.
1 | DRIVER D M, SEEGMILLER H L, MARVIN J G. Time-dependent behavior of a reattaching shear layer[J]. AIAA Journal, 1987, 25(7): 914-919. |
2 | BUSH R H, CHYCZEWSKI T S, DURAISAMY K, et al. Recommendations for future efforts in RANS modeling and simulation[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 0317. |
3 | EISFELD B, RUMSEY C, TOGITI V. Verification and validation of a second-moment-closure model[J]. AIAA Journal, 2016, 54(5): 1524-1541. |
4 | RUMSEY C L. Application of Reynolds stress models to separated aerodynamic flows[M]∥EISFELD B. Differential Reynolds Stress Modeling for Separating Flows in Industrial Aerodynamics. Cham: Springer, 2015: 19-37. |
5 | RUMSEY C L, RIVERS S M, MORRISON J H. Study of CFD variation on transport configurations from the second drag-prediction workshop[J]. Computers & Fluids, 2005, 34(7): 785-816. |
6 | WILCOX D C. Turbulence Modeling for CFD[M]. 3rd edition. San Diego: DCW Industries, 2006. |
7 | 董义道, 王东方, 王光学, 等. 雷诺应力模型的初步应用[J]. 国防科技大学学报, 2016, 38(4): 46-53. |
DONG Y D, WANG D F, WANG G X, et al. Preliminary application of Reynolds stress model[J]. Journal of National University of Defense Technology, 2016, 38(4): 46-53 (in Chinese). | |
8 | 阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报, 2020, 38(5): 829-857. |
YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamica Sinica, 2020, 38(5): 829-857 (in Chinese). | |
9 | SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences: NASA/CR-2014-218178[R]. Hampton: NASA Langley Research Center, 2014. |
10 | RUMSEY C, VATSA V. A comparison of the predictive capabilities of several turbulence models using upwind and central-difference computer codes[C]∥31st Aerospace Sciences Meeting. Reston: AIAA, 1993: 192. |
11 | WANG S Y, DONG Y D, DENG X G, et al. High-order simulation of aeronautical separated flows with a reynold stress model[J]. Journal of Aircraft, 2018, 55(3): 1177-1190. |
12 | 舒博文, 杜一鸣, 高正红, 等. 典型航空分离流动的雷诺应力模型数值模拟[J]. 航空学报, 2022, 43(11): 487-502. |
SHU B W, DU Y M, GAO Z H, et al. Numerical simulation of Reynolds stress model of typical aerospace separated flow[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 487-502 (in Chinese). | |
13 | 熊莉芳, 林源, 李世武. k?ε湍流模型及其在FLUENT软件中的应用[J]. 工业加热, 2007, 36(4): 13-15. |
XIONG L F, LIN Y, LI S W. k?ε turbulent model and its application to the FLUENT[J]. Industrial Heating, 2007, 36(4): 13-15 (in Chinese). | |
14 | MENTER F R, EGOROV Y. The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description[J]. Flow, Turbulence and Combustion, 2010, 85(1): 113-138. |
15 | 刘宏康, 陈坚强, 向星皓, 等. 改进k?ω?γ转捩模式对不同雷诺数下HIAD的转捩预测[J]. 航空学报, 2022, 43(12): 126868. |
LIU H K, CHEN J Q, XIANG X H, et al. Transition prediction for HIAD at different Reynolds number by improved k?ω?γ transition model[J]. Acta Aeronautica et Astronautica Sinica,2022,43(12):126868 (in Chinese). | |
16 | GREENBLATT D, PASCHAL K B, YAO C S, et al. Experimental investigation of separation control part 1: baseline and steady suction[J]. AIAA Journal, 2006, 44(12): 2820-2830. |
17 | GREENBLATT D, PASCHAL K B, YAO C S, et al. Experimental investigation of separation control part 2: Zero mass-flux oscillatory blowing[J]. AIAA Journal, 2006, 44(12): 2831-2845. |
18 | BACHALO W D, JOHNSON D A. Transonic, turbulent boundary-layer separation generated on an axisymmetric flow model[J]. AIAA Journal, 1986, 24(3): 437-443. |
19 | Mayeur J, Dumont A, Destarac D, et al. RANS simulations on TMR test cases and M6 wing with the Onera elsA flow solver[J]. AIAA Paper, 2015, 1745: 2015. |
20 | DEMUREN A, SARKAR S. Systematic study of Reynolds stress closure models in the computations of plane channel flows[R]. Hampton: Institute for Computer Applications in Science and Engineering, 1992. |
21 | PANDA J P, WARRIOR H V, MAITY S, et al. An improved model including length scale anisotropy for the pressure strain correlation of turbulence[J]. Journal of Fluids Engineering, 2017, 139(4): 044503. |
22 | LAUNDER B E, REECE G J, RODI W. Progress in the development of a Reynolds-stress turbulence closure[J]. Journal of Fluid Mechanics, 1975, 68(3): 537-566. |
23 | SPEZIALE C G, SARKAR S, GATSKI T B. Modelling the pressure–strain correlation of turbulence: an invariant dynamical systems approach[J]. Journal of Fluid Mechanics, 1991, 227: 245-272. |
24 | CéCORA R D, RADESPIEL R, EISFELD B, et al. Differential Reynolds-stress modeling for aeronautics[J]. AIAA Journal, 2014, 53(3): 739-755. |
25 | 王圣业, 符翔, 杨小亮, 等. 高阶矩湍流模型研究进展及挑战[J]. 力学进展, 2021, 51(1): 29-61. |
WANG S Y, FU X, YANG X L, et al. Progresses and challenges of high-order-moment turbulence closure[J]. Advances in Mechanics, 2021, 51(1): 29-61 (in Chinese). | |
26 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
27 | GALVáN S, REGGIO M, GUIBAULT F. Assessment study of K-? turbulence models and near-wall modeling for steady state swirling flow analysis in draft tube using fluent[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(4): 459-478. |
28 | TOMINAGA Y, STATHOPOULOS T. Numerical simulation of dispersion around an isolated cubic building: comparison of various types of k?? models[J]. Atmospheric Environment, 2009, 43(20): 3200-3210. |
29 | WILCOX D C. Formulation of the k-w turbulence model revisited[J]. AIAA Journal, 2008, 46(11): 2823-2838. |
30 | BRADSHAW P, FERRISS D H, ATWELL N P. Calculation of boundary-layer development using the turbulent energy equation[J]. Journal of Fluid Mechanics, 1967, 28(3): 593. |
31 | KAEWBUMRUNG, TANGSOPA, THONGSRI. Investigation of the trailing edge modification effect on compressor blade aerodynamics using SST k?ω turbulence model[J]. Aerospace, 2019, 6(4): 48. |
32 | ZHAO Y T, YAN C, WANG X Y, et al. Uncertainty and sensitivity analysis of SST turbulence model on hypersonic flow heat transfer[J]. International Journal of Heat and Mass Transfer, 2019, 136: 808-820. |
/
〈 |
|
〉 |